Computer Graphics Software & Hardware

NBAY 6120 Lecture 5 Donald P. Greenberg March 15, 2018

Recommended Readings

- Mike Seymour. "The State of Rendering, Part 1," fxguide.com, July 15, 2013. <u>FXGuide</u>.
- Mike Seymour. "The State of Rendering, Part 2," fxguide.com, July 17, 2013. <u>FXGuide</u>.

Why Is Graphics Important?

- 99% of our information intake is pictorial through our eyes
- Educational Modules
- Entertainment
- Games
- Advertising
- Medical
- Computer Aided Design
- Data Visualization

Ivan Sutherland

General Electric

Cornell in Perspective Film

SCIENTIFIC AMERICAN

May 1974

Gouraud Flat Polygon Shading

Each polygon is shaded based on a single normal.

Gouraud Thesis

Gouraud Smooth Shading

Each pixel is shaded by interpolating intensities computed in each of the polygon's vertices.

Gouraud Thesis

Phong Shading

Direct Illumination

Model

- Environment
 - Geometry & topology
 - Material Properties
 - > Color, reflectance, textures
 - > (Cost, strength, thermal properties)
- Lighting
 - Geometry & position
 - Intensity, spectral distribution
 - Direction, special distribution

Model

Camera

- Viewer position
- Viewer direction
- Field of View
 - Wide angle
 - Telephoto
- Depth of focus
 - Near
 - Far

The concept of the picture plane may be better understood by looking through a window or other transparent plane from a fixed viewpoint. Your lines of sight, the multitude of straight lines leading from your eye to the subject, will all intersect this plane. Therefore, if you were to reach out with a grease pencil and draw the image of the subject on this plane you would be "tracing out" the infinite number of points of intersection of sight rays and plane. The result would be that you would have "transferred" a real three-dimensional object to a two-dimensional plane.

Perspective Transformation

- Perspective Transformation
 - Matrix multiplication (4 x 4)
- Clipping objects outside the field of view
- Culling back-facing surfaces

Brunelleschi's Experiment

Hidden Line Algorithm

Hidden Line Algorithm

Raster Operations

- Conversion from polygons to pixels
 - Color computation
- Hidden surface removal (z-buffer)

Image Storage

- Typical frame buffer
 - 1280 x 1024 pixels
 - 3 channels (red, green, blue)
 - 1 byte/channel
- Total memory
 - 3 3/4 megabytes single buffer
 - 7 1/2 megabytes double buffer

Display

- Digital to analog conversion
 - 1280 x 1024 resolution
 - 60 frames/second
- Total data rate
 - 1¹/₄ million pixels
 - x 3 bytes/pixel
 - x 60 frames/second
 - = 225 megabytes/second
 - = 1.8 gigabits/second

Refrsh vs. Update Rate

• The "refresh rate" is the number of times per second the entire image is drawn

• The "update rate" is the number of times per second the image is changed

Phong Model: Variations of Specular Exponent

Roy Hall

Reflection Descriptions

• Images weren't realistic

Poor material representations Lack of global illumination

• Need to measure how light reflects

Need to derive algorithms to compute global illumination

Light Measurement Laboratory

Reflectance

Three Approximate Components

Ideal diffuse
(Lambertian)Ideal
specularDirectional
diffuseImage: Constraint of the second s

Cook-Torrance Renderings 1979

The Geometry of Scattering from a Layered Surface

acm Computer Graphics, Siggraph 1993 p. 166

Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, Pat Hanrahan. "A Practical Model for Subsurface Light Transport," ACM Siggraph 2001, August 2001, Los Angeles, CA, pp. 511-518.

Schematic Model of the Image Process

acm Transactions on Graphics, Siggraph 2003 p. 773

Direct Lighting and Indirect Lighting

Direct Lighting Only

Global Illumination

Ray Tracing *Turner Whitted, 1979*

Ray Tracing

Eric Haines

Ray Tracing

Jason Ardizzone

Eric Chen

Rendering Framework

Light as Rays

Basis Of Perspective – Lines Of Sight Through A Picture Plane [19]

The concept of the picture plane may be better understood by looking through a window or other transparent plane from a fixed viewpoint. Your lines of sight, the multitude of straight lines leading from your eye to the subject, will all intersect this plane. Therefore, if you were to reach out with a grease pencil and draw the image of the subject on this plane you would be "transfer out" the infinite number of points of intersection of sight rays and plane. The result would be that you would have "transferred" a real three-dimensional object to a two-dimensional plane.

Light as Waves

IR

Light as Photons

High Speed Film

Surface Reflectance

Ray Tracing

- Path Tracing is similar to ray tracing except that many rays are sent for each pixel.
- Rays are sent out on a probabilistic basis depending on the reflectance (transmittance) distributions of each surface that is struck.
- Computations can be accelerated by using "importance sampling", where the ray directions are dependent on the magnitude of the potential effects.

- Rays are cast to estimate the transported radiance.
- Recursion stops if
 - A light source is hit
 - A maximum depth/minimum radiance is reached
 - The ray leaves the scene/hits the background

University of Freiburg - Computer Science Department - Computer Graphics - 7

Teschner

1 sample/pixel

100 samples/pixel

10,000 samples/pixel

1,000 samples/pixel

1 sample/light source 100 samples/pixel 100 samples/light source 100 samples/pixel

Bi-directional Path Tracing

Bi-Directional Path Tracing

Bi-directional Path Tracing

Graphics Pipeline Hardware

"Moore's Law is for wimps."

Why a Pipeline?

A pipeline allows multiple processes to occur in parallel.

- Example: Automobile assembly line.
 - Assume 4 stations, each taking 2 minutes to do its task. It takes 8 minutes to make a car, but the *rate* at which cars are made is one every 2 minutes.

Example: Automobile Pipeline

• Automobile takes 8 minutes to make, but the assembly line makes a car every two minutes.

Example: Automobile Pipeline

• Automobile takes 8 minutes to make, but the assembly line makes a car every two minutes.

® Donald P. Greenberg - Cornell Program of Computer Graphics

circa 1970

• System used to generate Phong goblet

circa 1980

Cost of Memory was Prohibitive

- 512x480x8 bit frame buffer cost \$80,000!
- No z-buffer (at 24 or 32 bits/pixel, it requires even more memory than FB)
- Only single frame buffer
- All work done in CPU until frame buffer (slow!)

circa 1986

- Added Z-Buffer
- Added Double Frame Buffer
- Rasterization and visible surface computations performed in hardware

- Addition of texture mapping units
- With texturing, high resolution detail is possible with relatively simple geometry

Multipass Example: Light Maps

• Two separate textures, one for the material's composition, one for the lighting

J.L.Mitchell, M. Tatro, and I. Bullard

Castle's Geometry

Agata & Andrzej Wojaczek, Advanced Graphics Applications Inc.

Reflection Example - Castle

Agata & Andrzej Wojaczek, Advanced Graphics Applications Inc.

Putting it all together

Gloss textures on pear, shadows on curved surfaces, reflections dropping off with depth from table.

J.L. Mitchell & E. Hart, ATI Technologies, Inc.

• Vertex buffer (model data) added to reduce bandwidth requirements between CPU and graphics board
Graphics Pipeline

M — Model
L — Lighting
P — Perspective/Clipping
S — Scan Conversion/Z-buffer
D — Display Storage
V — Video

Graphics Pipeline

M — Model

- L Lighting
- P Perspective/Clipping
- T Texturing
- S Scan Conversion/Z-buffer
- D Display Storage
- V Video

Graphics Hardware

• Early GPU's performed lighting and clipping operations on locally stored model

Graphics Hardware

Graphics Hardware

nVidia's new Kepler Chip

2012

Moore's Law – GPU Transistor Counts

Processor	Transistor count	Date of introduction	Manufacturer	Process	Area
R520	321,000,000	2005	AMD	90 nm	288 mm ²
R580	384,000,000	2006	AMD	90 nm	352 mm²
G80	681,000,000	2006	NVIDIA	90 nm	480 mm²
R600 Pele	700,000,000	2007	AMD	80 nm	420 mm²
G92	754,000,000	2007	NVIDIA	65 nm	324 mm²
RV790XT Spartan	959,000,000	2008	AMD	55 nm	282 mm²
GT200 Tesla	1,400,000,000	2008	NVIDIA	65 nm	576 mm²
Cypress RV870	2,154,000,000	2009	AMD	40 nm	334 mm²
Cayman RV970	2,640,000,000	2010	AMD	40 nm	389 mm²
GF100 Fermi	3,200,000,000	Mar 2010	NVIDIA	40 nm	526 mm²
GF110 Fermi	3,000,000,000	Nov 2010	NVIDIA	40 nm	520 mm ²
GK104 Kepler	3,540,000,000	2012	NVIDIA	28 nm	294 mm²
Tahiti RV1070	4,312,711,873	2011	AMD	28 nm	365 mm²
GK110 Kepler	7,080,000,000	2012	NVIDIA	28 nm	561 mm²
RV1090 Hawaii	6,300,000,000	2013	AMD	28 nm	438 mm²
GM204 Maxwell	5,200,000,000	2014	NVIDIA	28 nm	398 mm²
GM200 Maxwell	8,100,000,000	2015	NVIDIA	28 nm	601 mm²
Fiji	8,900,000,000	2015	AMD	28 nm	596 mm²
GP102 Pascal	12,000,000,000	2016	Nvidia	12 nm	471 mm²
Vega 10	12,500,000,000	2017	AMD	14 nm	484 mm²
GP100 Pascal	15,300,000,000	2016	Nvidia	16 nm	610 mm ²
GV100 Volta	21,100,000,000	2017	Nvidia	12 nm	815 mm²

http://en.wikipedia.org/wiki/Transistor_count

Artificial Intelligence Systems

Nvidia DGX

Intel – Integrated Graphics 2013

AMD – Integrated Graphics

2013

ELITE AMD A-SERIES / CODENAMED "RICHLAND"

AMD – Integrated Graphics

- "Kaveri"
- 28 nm
- 47% GPU

End...