Virtual Reality Technology and Convergence

NBAY 6120 March 20, 2018 Donald P. Greenberg Lecture 7

Virtual Reality

• A term used to describe a digitally-generated environment which can simulate the perception of PRESENCE.

 Note that within the context of this course, I refer to VR as containing 3D data as contrasted to just creating a digital copy of information obtained from a film or digital camera, such as a photograph or a texture.

Requirements for "PRESENCE"

- Understanding the Human Visual System
- Improving the Device Characteristics and System Performance
- Social Acceptance

Virtual Reality

• A person immersed within this virtual world can manipulate objects, interact with the environment, and explore the virtual world in the same perceptual way as one interacts with the physical world.

Human in the Loop

- Abstract Interpretation
- Viewing a Picture on Television
- Cinema Viewing
- Presence

Social & Economic Requirements for Mass Acceptance of VR/AR

- Large enough investments for R & D & manufacture
- Cheap enough for mass market
- Social acceptance of 3G (Geeks, Games, and Goggles)

Facebook Buys Oculus Rift

Microsoft's Hololens

Microsoft's Hololens

Why is Google (and Andreessen / Horwitz) investing \$500+ million in Magic Leap?

Magic Leap

Betting on New Worlds

Venture funding for virtual reality and augmented reality (before and after Facebook's purchase of Oculus)

PRE-FACEBOOK TOTAL Number of Investments: 50 Investment value: \$316 million							POST-FACEBOOK TOTAL Number of Investments: 91 Investment value: \$1.1 billion							
\$700 m	nillion						1						35	
600	Investment value (left scale)							30						
500	Number of investments (right scale)						25							
400									\square			_	20	
300							 						15	
200										\mathbf{h}			10	
100												-	5	
0	-												0	
	4Q 2012	1Q 2013	2Q	3Q	4Q	1Q 2014	2Q	3Q	4Q	1Q 2015	2Q	3Q		

Source: CB Insights

THE WALL STREET JOURNAL.

Head-mounted Displays

Henry Fuchs, University of North Carolina

Oculus Rift DK2

Oculus Rift

Google Contact Lenses

Microsoft's Hololens

Magic Leap Displays

Rony Abovitz

HTC and Valve's SteamVR Vive 2016

Google's Cardboard

Pokemon Go

"Crossing the Chasm"

A BUSINESSWEEK BESTSELLER

"The bible for entrepreneurial marketing" -TOM BYERS, Founder of Stanford Technology Ventures Program

CROSSING THE MARKETING AND SELLING DISRUPTIVE PRODUCTS TO MAINSTREAM CUSTOMERS CHASM

GEOFFREY A. MOORE

Author of Inside the Tornado and Living on the Fault Line

Will Virtual Reality work this time?

Virtual Reality

- Virtual Reality is not new
- The amount of financing which has been made available
- Costs have been sufficiently lowered to bring to the masses

Technical Requirements for VR/AR Satisfactory Delivery

- Display resolution similar to the human visual system
- Display quality similar to human visual system (illumination, color, etc.)
- Sufficient display rates for motion perception
- Rendering speeds to satisfy display rate requirements
- Sufficient wireless bandwidth for data

Distorted Images

Jean-Francois Niceron. *Thaumaturgus opticus*...(Rome, 1646), illus. 25.

The projection of a screen or grid in anamorphic perspective makes the transfer of a representation possible.

Erhard Schon. Picture puzzle: Out, You Old Fool c. 1535. Fred Leeman. Hidden Images, 1975, Harry N. Abrams.

Hans Holbein

The Ambassadors

Opera Lighting

Siggraph 1991

Dorsey, Sillion and Greenberg

Opera Lighting

Siggraph 1991

Dorsey, Sillion and Greenberg

Opera Lighting

Siggraph 1991

Dorsey, Sillion and Greenberg
Opera Lighting

Siggraph 1991

Dorsey, Sillion and Greenberg

Opera Lighting

Siggraph 1991

Dorsey, Sillion and Greenberg

Truck Art

http://www.wltc.org/Documents/TruckArt.htm

Julian Beever

Chalk Drawings

Oculus Rift

Components

1080 pixels high

960 pixels wide

960 pixels wide

Angular Rotation

Distortion Strategy

Distortion Strategy

Distorted Image

Distorted Image

What is necessary to perceive depth?

Depth Perception from 2-D Images

- Monoscopic
- Stereoscopic

Paris Street, Rainy Day 1877

Caillebotte

Human Depth Perception

- Perspective
- Depth from Motion, Relative Size, Position, Familiarity
- Occlusion
- Texture Gradient
- Parallax from Motion
- Shading, Shadows and Specular Highlights
- Atmospheric Blur

- Perspective
- Depth from Motion, Relative Size, Position, Familiarity
- Occlusion
- Texture Gradient
- Parallax from Motion
- Shading, Shadows and Specular Highlights
- Atmospheric Blur

- Perspective
- Depth from Motion, Relative Size, Position, Familiarity
- Occlusion
- Texture Gradient
- Parallax from Motion
- Shading, Shadows and Specular Highlights
- Atmospheric Blur

- Perspective
- Depth from Motion, Relative Size, Position, Familiarity
- Occlusion
- Texture Gradient
- Parallax from Motion
- Shading, Shadows and Specular Highlights
- Atmospheric Blur

- Perspective
- Depth from Motion, Relative Size, Position, Familiarity
- Occlusion
- Texture Gradient
- Parallax from Motion
- Shading, Shadows and Specular Highlights
- Atmospheric Blur

- Perspective
- Depth from Motion, Relative Size, Position, Familiarity
- Occlusion
- Texture Gradient
- Parallax from Motion
- Shading, Shadows and Specular Highlights
- Atmospheric Blur

- Perspective
- Depth from Motion, Relative Size, Position, Familiarity
- Occlusion
- Texture Gradient
- Parallax from Motion
- Shading, Shadows and Specular Highlights
- Atmospheric Blur

- Perspective
- Depth from Motion, Relative Size, Position, Familiarity
- Occlusion
- Texture Gradient
- Parallax from Motion
- Shading, Shadows and Specular Highlights
- Atmospheric Blur

- Perspective
- Depth from Motion, Relative Size, Position, Familiarity
- Occlusion
- Texture Gradient
- Parallax from Motion
- Shading, Shadows and Specular Highlights
- Atmospheric Blur
- Accommodation

Note change in lens shape

Accommodation

• This is the process by which the vertebrate eye changes optical power to maintain a clear image or focus on an object as its distance varies.

Accommodation

The reflex can be controlled but cannot be 'felt' Accommodation amplitude declines with age

Human Depth Perception

Stereoscopic Vision: Behind The Screen (Concave)

Stereoscopic Vision: In Front Of The Screen (Convex)

Stereoscopic Vision: At The Screen

Vergence

• The simultaneous movement of the pupils of the eyes toward or away from one another during focusing.

• This measure of the convergence or divergence of a pair of light rays is defined as vergence.

Diagram of Vergence

Vergence Accommodation Conflict

- Computer and projection displays present images on a single surface but have a focal distance (blur on the retina) which may be in front of or behind the screen
- The inability to fuse the binocular stimuli causes discomfort and fatigue to the viewer
- Viewers can be trained, and the discomfort can diminish with practice

