
SIGGRAPH ’90, Dallas Computer Graphics, Volume 24, Number 4, August 1990

Curved Surfaces and Coherence for
Non-penetrating Rigid Body Simulation

David Baraff

Program of Computer Graphics
Cornell University
Ithaca, NY 14853

Abstract

A formulation for the contact forces between curved sur-
faces in resting (non-colliding) contact is presented. In contrast to
previous formulations, constraints on the allowable tangential
movement between contacting surfaces are not required. Surfaces
are restricted to be twice-differentiable surfaces without boun-
dary. Only finitely many contact points between surfaces are
allowed; however, the surfaces need not be convex. The formula-
tion yields the contact forces between curved surfaces and polyhe-
dra as well. Algorithms for performing collision detection during
simulation on bodies composed of both polyhedra and strictly
convex curved surfaces are also presented. The collision detec-
tion algorithms exploit the geometric coherence between succes-
sive time steps of the simulation to achieve efficient running
times.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism

Additional Key Words and Phrases: dynamics, constraints, simu-
lation

1. Introduction
One of the most difficult behaviors to simulate in rigid

body dynamics is the non-penetration constraint between solid
bodies. The two problems involved in simulating non-penetrating
rigid bodies are (1) detecting collisions and contact between pairs
of bodies and (2) determining the contact forces present between
contacting bodies.

The force determination problem can be solved by analyti-
cal and non-analytical methods. Both Barzel and Barr[3] and
Baraff[1] give motivations for preferring analytical methods over
non-analytical methods in rigid body simulation. Analytical for-
mulations for the contact forces that arise between polyhedral
bodies have been presented in [1, 6, 11, 12]. These formulations
are the most general possible in that they express the contact
forces between bodies that are completely unconstrained in their
tangential (sliding) movement. For curved surfaces, formulations
for the contact forces that arise to prevent inter-penetration have
only been realized for certain cases of constrained tangential
movement. For example, if two curved surfaces are restricted to
roll without slipping, the contact force between them is easily
determined[10, 15]. Similar restrictions such as rolling with a
specified slip velocity also have simple analytical solutions. The

general case of non-penetration between curved surfaces without
any constraint on the tangential movement poses a much more
difficult problem; the extension from polyhedra to curved surfaces
is not straightforward. We present a formulation of the contact
forces between curved surfaces that are completely unconstrained
in their tangential movement. We have not encountered a formu-
lation for this problem in any previous literature. We restrict our-
selves to the case of twice-differentiable curved surfaces without
boundary that contact at only finitely many points. Configurations
that result in one- or two-dimensional contact regions are not dealt
with. The surfaces need not be convex in the neighborhood of a
contact point and may be defined by either implicit or parametric
equations. A formulation of the contact forces between curved
surfaces and polyhedra is derived as a special case of contact
between two curved surfaces.

The collision detection problem has an extensive literary
background in the fields of computational geometry and robotics.
Computational geometry focuses on problems posed in terms of a
static environment. Robotics generally focuses on problems
posed in terms of a dynamic environment; the movement of
bodies is known in terms of some function of time. In both cases,
the emphasis is on developing the best algorithm for solving a sin-
gle problem, either static or dynamic. In contrast, dynamic simu-
lation involves the solution of a sequence of static problems, one
per time step. Although each problem of the sequence can be
solved separately using previous collision detection methods,
algorithms specifically designed to solve a sequence of related
problems are more efficient. We present efficient collision detec-
tion algorithms for polyhedra and convex closed curved surfaces
by exploiting the geometric coherence between successive colli-
sion detection problems of the simulation. Surfaces can be
defined either implicitly or parametrically.

2. Overview
Simulation of non-penetrating rigid bodies by analytical

methods involves the basic flow of control shown in figure 1. At
every time step, bodies are examined pairwise for possible inter-
penetration. If two bodies are found to inter-penetrate, the simu-
lator backtracks to the point in time immediately before the inter-
penetration occurred. Once a configuration without inter-
penetration is achieved, the contact points between all the bodies
are found. Finally, a system of constraint equations based on the
contact points yields the analytically correct contact forces and
impulses at every contact point. After the contact forces and
impulses are applied to the bodies, a new time step is begun. We
group this series of steps into two phases: contact determination
(steps A-D of figure 1) and force determination (step E of
figure 1) For curved surfaces, both the inter-penetration check and
the backtracking steps of the collision determination phase make
use of the same mathematical derivations used in the force deter-
mination phase. Accordingly, we will deal first with extending

19

This is an electronic reprint. Permission is granted to copy part or all of
this paper for noncommercial use provided that the title and this copyright
notice appear. This electronic reprint is  1994 by CMU. The original
printed paper is  1990 by the ACM.

Author address (May 1994): David Baraff, School of Computer Science,
Carnegie Mellon University, Pittburgh, PA 15213, USA.
Email: baraff@cs.cmu.edu

SIGGRAPH ’90, Dallas Computer Graphics, Volume 24, Number 4, August 1990

Pairwise
geometrical
comparison

Inter-penetration?

Initial configuration

yes

no

Predict
intersection

time t

(backup to t)

Find
contact
points

Form/solve
force

equations

(apply forces)

(advance t)

A

BC

D E

Figure 1. Simulator control flow.

the force determination model to curved surfaces.

3. Analytical Force Determination
Featherstone[6] gives a complete derivation of the system

of constraint equations used to find contact forces between rigid
bodies. We present a brief review of the mathematical structure
of the problem.

At some time t 0 we are given a collection of non-
penetrating perfectly rigid bodies that contact at some number of
points and asked to calculate the forces between the objects that
would naturally arise to prevent inter-penetration. Contact points
at which bodies are colliding give rise to contact impulses.
Methods for calculating the contact impulses between bodies of
any geometry are given in [1, 6, 9]. Contact impulses are calcu-
lated and applied prior to considering contact forces. Accordingly
it is assumed that the configuration of bodies being analyzed has
no colliding contacts.

Consider a contact point pc between two bodies A and B at
time t 0 (figure 2). Let the unit surface normal at the contact point
be n̂ (see Baraff[1] for the case when n̂ is not well defined). In the
absence of friction, the (as yet) unknown contact force F is writ-
ten F = f n̂ with f the unknown (scalar) contact force magnitude at
time t 0.

n^F = f

A

B

n

pc

^

Figure 2. Contact between two objects.

The primary consideration for calculating the unknown
contact force magnitude f at each contact point lies in the non-
penetration constraint between bodies. At every contact point pc
between two bodies A and B at time t 0, a geometrical constraint
that prevents A and B from inter-penetrating near pc is con-

structed. Each constraint is converted by a differentiation opera-
tion into a constraint on the contact force magnitude f at pc . The
geometrical constraint is expressed by a constraint function (or
characteristic function) χ(t). A characteristic function χ(t) is a
function of time that characterizes the geometric relation of A and
B close to pc at times near t 0.1 χ takes on values as follows:

χ(t) =

I
J
K
J
La < 0 if A and B are inter-penetrating near pc.

a = 0 if A and B are touching near pc or

a > 0 if A and B are separate near pc or

(1)

Given χ, we can express the constraint that A and B not inter-
penetrate near pc as

χ(t) ≥ 0. (2)

For example, consider a potential vertex-face contact between two
planar polygons (figure 3).

n̂

pb

B

χ(t) > 0

n̂

pb

B

χ(t) = 0

n̂

pb

B

χ(t) < 0

pa

A

pa

A

pa

A

Figure 3. Vertex-face contact.

Let pa(t) be the position of the vertex of A, pb(t) be the position of
any fixed point on the contact face of B and let n̂(t) be the out-
wards unit normal of the contact face. The characteristic function
for this situation is

χ(t) = n̂(t) . (pa(t) − pb(t)). (3)

From figure 3, χ(t) is positive, zero, or negative according to
whether pa(t) lies above, on, or below the contact face of B at
time t.

Intuitively, χ may be regarded as a measure of the distance
between A and B, with negative distance indicating inter-
penetration. Similarly, χ. may be regarded as a measure of the
relative velocity between A and B. If χ. (t 0) < 0 then χ is decreas-
ing and the bodies are colliding; however, it was assumed that the
configuration had no colliding contact points. Likewise, if
χ. (t 0) > 0 then χ is increasing and the bodies are separating; in
this case the contact force is automatically zero and the contact
point may be disregarded. Thus, the only contact points con-
sidered are those for which χ. (t 0) = 0.

In order to convert the geometric constraint χ(t) ≥ 0 (equa-
tion (2)) into a constraint on the contact forces, we take the second
derivative of χ with respect to time and require that

χ..(t 0) ≥ 0. (4)

Informally, we have constrained the relative "acceleration" χ.. ,
between A and B, to be non-negative. (Strictly speaking however,
χ.. is not a physical measure of acceleration). Analytically, since
χ(t 0) = χ. (t 0) = 0, χ..(t 0) < 0 would make χ a decreasing function
at t 0. This would violate the constraint of equation (2).
hhhhhhhhhhhhhhhhhhhhh
1 We stress the fact that χ is a local function and need only be valid for an arbitrarily
small open neighborhood of t 0.

20

SIGGRAPH ’90, Dallas Computer Graphics, Volume 24, Number 4, August 1990

How does χ..(t 0) ≥ 0 constrain the contact forces? While
χ(t 0) and χ. (t 0) are independent of any internal or external forces,
χ..(t 0) is a linear expression of the contact forces at time t 0. Intui-
tively, the contact forces must be "strong enough" to satisfy equa-
tion (4), and thus prevent A and B from accelerating towards each
other at pc . Appendices A and C show that equation (4) is a linear
inequality constraint on the contact force magnitudes.

In addition to the geometrically motivated constraint
χ..(t 0) ≥ 0, there is an additional relationship between χ..(t 0) and f
that must be satisfied. If χ..(t 0) > 0, then χ is an increasing func-
tion at time t 0 and A and B are separating at pc . In this case the
contact force is zero. However, if χ..(t 0) = 0 then A and B are not
separating and f need not be zero. The relationship between f and
χ..(t 0) is known as a complementarity condition; it is written as

f χ..(t 0) = 0 (5)

to express the fact that either f or χ.. is zero. If we impose the res-
triction that f be non-negative, so that objects can "push" but not
"pull" on each other, then a configuration with N contact points
must satisfy the system of equations

χ.. i(t 0) ≥ 0, fi χ.. i(t 0) = 0, fi ≥ 0 (1 ≤ i ≤ N) (6)

where fi and χi are the contact force and constraint function for
the ith contact point. In a previous paper, we proposed a heuristic
method for solving equation (6). For the case of frictionless con-
tact, equation (6) forms what is known as a positive semidefinite
(PSD) linear complementarity problem. Equation (6) can also be
viewed as a PSD quadratic programming problem. Efficient
numerical algorithms exist that solve PSD linear complementarity
problems2 and PSD quadratic programs[14], and we advocate
their use over the heuristic solution method. However, in the
presence of friction, it is known that equation (6) is no longer
necessarily PSD. Finding the solution of a non-PSD linear com-
plementarity problem or quadratic program is NP-hard[14]. A
recent result[2] shows that finding a solution to equation (6) in the
presence of friction is also NP-hard. Thus, heuristic solution
methods may indeed be necessary for practical simulations. For
both PSD and non-PSD systems, coherence based methods can be
exploited[12, 14] to reduce the computational expense of solving
equation (6). See Lötstedt[11, 12] and Featherstone[6] for further
discussions on the properties of this constraint system and
methods for solving it.

4. Analytical Forces between Curved Surfaces
In the case of polyhedral objects, the characteristic function

χ and its second derivative χ.. are readily available. Additionally,
contact between polyhedra may result in line segments or
polygons of contact. Although this results in an infinity of contact
points, constraint functions need be formulated only for the
finitely many vertices of the convex hull polygon of the contact
line or area[1]. For curved surfaces however, the convex hull of
the contact area may not be a polygon. For example, a cylinder
standing upright on a plane has a circular area of contact points.
The convex hull of this contact region is a circle and cannot be
described by a finite number of vertices. We have not developed
a constraint for contact regions of dimension one or higher.
Although discretization of the boundary of the contact area is one
possibility, we would rather deal with an analytical formulation
over the entire boundary. For curved surfaces, we will restrict our
attention to situations in which the number of contact points is
finite. We will construct a characteristic function χ for each con-
tact point.
hhhhhhhhhhhhhhhhhhhhh
2 Our simulator uses an implementation of Lemke’s algorithm described in [17].

The difficulty in formulating a geometric constraint func-
tion for curved surfaces in contact is the need to construct a for-
mula specific enough to be differentiable. How can we formulate
the geometric constraint that all points on surface A near a point
pc remain on or outside surface B? Furthermore, how can we
write this as a scalar-valued differentiable function that is posi-
tive, zero, or negative according to whether A and B are disjoint,
contacting, or inter-penetrating? One possible start is to let χ be
the minimum distance between A and B near pc , and require that χ
always be non-negative. The minimum distance is positive when
A and B are separate and zero when they are contacting. How-
ever, as figure 4 shows, the minimum distance is not negative
when A and B initially inter-penetrate; it is zero.3 Additionally,
the minimum distance is not differentiable at the time that A and B
first contact at pc .

Closely related to the minimum distance however is the
concept of an extreme distance. The extreme distance between A
and B near pc is defined as follows. If A and B are disjoint near pc
then the extreme distance between A and B is just the normal
minimum distance between A and B (near pc). If A and B are in
contact at pc , then the extreme distance is zero. If A and B have
inter-penetrated near pc , then the extreme distance is the max-
imum distance between A and B (near pc). The extremal points
of A and B are the two points pa and pb on A and B that realize the
extremal distance (figure 4).

G

F

pb

pa

pb

pa

pa

pb

extreme dist. = min. dist.

extreme dist. = 0

extreme dist. = max. dist.

min. dist. = 0

Figure 4. The extremal distance and extremal points.

Given the above definitions, we can construct a constraint
function by letting χ(t) be a positive multiple of the extreme dis-
tance when A and B are disjoint or contacting. When A and B
have inter-penetrated, we will let χ(t) be a negative multiple of
the extreme distance. In the next section we will show how pa
and pb can be used to construct such a formula. The restriction to
situations where only finitely many contact points arise guarantees
that the extreme distance (and the extremal points) of A and B
sufficiently near pc will be unique.

5. Deriving χ..

We still must construct an explicit formula for χ so that it
may be differentiated to find χ.. . Although the χ we develop in
this section yields an impractical result (computationally speak-
ing), we feel its presentation is necessary to clearly understand the
final form of χ and χ.. derived in section 6. The derivation of χ
and χ.. will assume implicit definitions of the curved surfaces;
however, the end result depends solely on the derivatives of the
surfaces at the contact points. As a result, parametric definitions
of the surfaces can be used as easily as implicit definitions for
determining contact forces; see appendix D for details.

We model the two curved surfaces of A and B as implicit
time-varying functions F (p, t) and G (p, t) where p is a point in
world space. At time t, a point p is on the surface of A iff
hhhhhhhhhhhhhhhhhhhhh
3If one shape lies completely inside the other, the minimum distance between them
is positive, but intersection between the surfaces must occur first.

21

SIGGRAPH ’90, Dallas Computer Graphics, Volume 24, Number 4, August 1990

F(p, t) = 0. (We will refer to F and G as both functions and sur-
faces). Furthermore, if F (p, t) < 0 then p is inside A, and if
F (p, t) > 0 then p is outside A. The function G similarly defines
the shape of B. We will use the notation

∂p
∂hhhF(p, t) = F ′(p, t) = ∇F(p, t)T , (7)

where ∇F(p, t) is a column vector (and F ′(p, t) a row vector). If
F (p, t) = 0, then ∇F(p, t) is the outwards directed surface normal
of F at point p at time t (figure 5).

ap
pb

extremal points F(p) > 0

F(p) < 0 F(p) = 0

∇F(p)

Figure 5. Implicit surface description of A and B in terms of F
and G.

Given these definitions, we can express χ as

χ(t) = ∇G(pb ,t) . (pa(t) − pb(t)) (8)

where pa and pb are the two extremal points between A and B at
time t. From figure 6, we see that ∇G(pb ,t) is colinear with the
vector pa − pb .

G

F

pb

pa

pb

pa

pa

pb

∇G(pb ,t)

∇G(pb ,t)
∇G(pb ,t)

χ(t) > 0 χ(t) = 0 χ(t) < 0

Figure 6. χχ expressed in terms of the extremal points.

When A and B are disjoint, ∇G(pb ,t) is pointed in the same direc-
tion as pa − pb; hence χ(t) is a positive multiple of the distance
|| pa − pb ||. Similarly, when A and B inter-penetrate, ∇G(pb ,t)
points in the opposite direction of pa − pb and χ(t) is a negative
multiple of the distance || pa − pb ||. Thus, | χ(t) | is the extreme
distance at time t scaled by ||∇G(pb ,t)|| and equation (8) defines a
valid characteristic function χ.

The derivative of equation (8) requires the derivatives of pa
and pb . Although the curved surface characteristic function
appears similar to the polyhedral characteristic function (equation
(3)), the latter is easily differentiated while the former is not. In
the polyhedral characteristic function, the points pa and pb denote
fixed points of A and B. The derivatives of a fixed point of a rigid
body are simply expressed in terms of the motion of the
body[3, 9]. However, in the case of curved surfaces, pa and pb are
not fixed points of A and B. pa and pb change positions in two
ways. First, pa and pb move according to the rigid body motion of
A and B. Second, pa and pb change positions in the body space of
A and B (figure 7). In order to differentiate pa and pb , they must
be redefined in such a way that they can be differentiated.

apap

bp bp

bp

ap

Figure 7. Movement of pa and pb in both world and body
space.

We define the extremal points pa and pb at time t as the
(unique) pair of points near pc that satisfy the conditions

I
J
J
K
J
J
L
E 4: (pb − pa) + λ1∇G(pb ,t) = 0

→
.

E 3: G(pb ,t) = 0

E 2: F(pa ,t) = 0

E 1: ∇F(pa ,t) + λ2∇G(pb ,t) = 0
→

(9)

λ1 and λ2 are unconstrained scalar values. Condition E 1 guaran-
tees that the surface normals at the extremal points are colinear.
Conditions E 2 and E 3 guarantee that pa and pb are points on A
and B, and condition E 4 guarantees that pb’s displacement from
pa is colinear to the surface normals. A formal justification of
conditions E 1 thru E 4 as a definition of the extremal points may
be found in any advanced calculus text; see for example Taylor
and Mann[16]. Figure 6 shows the geometric intuition behind
equation (9). Equation (9) is closely related to the Lagrange mul-
tiplier formulation for constrained minimization (hence our choice
of λ as a symbol for the multipliers of ∇G).

For the case of contact between a polyhedron A and a
curved surface B, equation (9) is modified depending on whether
pc is coincident with a face, edge or vertex of the polyhedron. If
pc lies in a face, then F is the implicit function of the plane
embedding the face. Otherwise, if pc lies on an edge and
∇G(pb ,t 0) is not perpendicular to any adjoining face, pa is con-
strained to be the extremal point on the edge. If pc lies on a ver-
tex, and ∇G(pb ,t 0) is not perpendicular to any adjoining edge
(and hence any adjoining face), pa is defined to be coincident with
the vertex. In the above two cases, a system of equations similar
to (9) is formed and used in place of equation (9).

Conditions E 1 thru E 4 are used to derive expressions for
the derivatives of pa and pb . (We will consider numerical solu-
tions of equation (9) to find pa and pb when we deal with collision
determination in section 7.) Given extremal points pa and pb , we
can find p

.
a and p

.
b by making use of the implicit function theorem

for simultaneous equations from calculus[16]. This theorem
asserts that under proper conditions, pa and pb may be regarded as
functions of time; the theorem also gives an analytic expression
for the derivatives of pa and pb (with respect to time). We will
write the Jacobian determinant of a set of vector functions H 1(x→)
thru Hn(x→) as

∂(x 1, . . . ,xn)

∂(H 1, . . . ,Hn)hhhhhhhhhhhhh =

J
J
J
J
J
J
J
J
J ∂x 1

∂Hnhhhh

.

.

.
∂x 1

∂H 1hhhhh

. . .

.

.

.

. . .

∂xn

∂Hnhhhh

.

.

.
∂xn

∂H 1hhhhh
J
J
J
J
J
J
J
J
J

. (10)

22

SIGGRAPH ’90, Dallas Computer Graphics, Volume 24, Number 4, August 1990

If we are dealing with 3-space, then pa and pb are each
three (scalar) functions of time: pax

(t), pay
(t) and paz

(t) and simi-
larly for pb . The implicit function theorem, applied to equation
(9) yields

p
.

ax
(t) = −

J
Khh (11)

where

K =
∂(t,pay

,paz
,pbx

,pby
,pbz

,λ1,λ2)

∂(E 1,E 2,E 3,E 4)hhhhhhhhhhhhhhhhhhhhhhhh (12)

and

J =
∂(pax

,pay
,paz

,pbx
,pby

,pbz
,λ1,λ2)

∂(E 1,E 2,E 3,E 4)hhhhhhhhhhhhhhhhhhhhhhhhhh . (13)

Similar expressions give the derivatives for pay
, paz

, pbx
, pby

and
pbz

. Appendix E discusses possible ill-conditioning of the Jaco-
bian matrix J. If we are given the extremal points pa and pb , λ1

and λ2 are easily determined and p
.

a and p
.

b are easily calculated
(assuming the needed derivatives of F and G are at hand). How-
ever, an expression for χ.. involves the symbolic computation of p

..
a

and p
..

b; these in turn require derivatives of K and J. Unfor-
tunately, a symbolic expression for the determinant of K or J is
impractical. Although K and J have considerable block structure,
block structure cannot be exploited in computing determinants. In
its present form, the Jacobian determinant contains more than
1,000 terms of seven factors each; the derivative would contain
far more terms. A transformation of coordinate systems and func-
tions is presented in the next section that yields more tractable
expressions.

6. Coordinate Transformations
The formulation for p

.
a and p

.
b in the last section involved

derivatives of determinants of 8 × 8 matrices. By choosing an
appropriate coordinate system and transforming the representation
of the surface functions F and G, we can find a tractable represen-
tation for p

.
a and p

.
b .

First, we assume a rotated coordinate system in which
∇F(pa ,t 0) and ∇G(pb ,t 0) are colinear with the z axis at time t 0,
with ∇G(pb ,t 0) directed positively along z. (We will employ the
standard right-handed coordinate system used to depict functions
z=h(x,y), with z the vertical axis). The effect of this rotation on
derivatives of F and G is discussed in appendix B. Next, we
explicitly model A near pa as a time-varying scalar function f of x
and y. Where F was a function F (x,y,z,t), f is a function
f (x,y,t). The justification for the existence of f is the implicit
function theorem of calculus. The formal definition of f is

F(x,y, f(x,y,t), t) = 0. (14)

Thus, the point (x,y, f(x,y,t)) is a point on F at time t. A function
g is chosen similarly for G. In this new coordinate system, the
extremal points pa and pb share the same x and y coordinates at
time t 0. At times t near t 0, A and B do not penetrate as long as the
z value of pa is greater or equal to the z value of pb (figure 8).
This can be expressed as

χ(t) = f(pax
,pay

,t) − g(pbx
,pby

,t). (15)

The condition χ.. ≥ 0 is simply

dt 2

d 2
hhhh f(pax

,pay
,t 0) −

dt 2

d 2
hhhhg(pbx

,pby
,t 0) ≥ 0. (16)

The extremal points are then expressed in terms of f and g,
without the use of the multipliers λ1 and λ2 (see appendix C,

z = f (x,y)

z = g (x,y)

(pax
,pay

, f(pax
,pay

,t))

(pbx
,pby

,g(pbx
,pby

,t))

x

yz

Figure 8. Side view of the implicit surfaces F and G expressed
explicitly by f and g.

equation (42)). This change of coordinate systems and functions
reduces the number of variables from 8 to 4; this allows a formu-
lation in terms of 4 × 4 matrix determinants as opposed to the 8 × 8
matrices of the previous section. While this is an improvement,
calculating the derivatives of the determinants constructed from
equation (42) is still a formidable challenge; however, they are no
longer needed. The real advantage of the new formulation is that
the second derivatives of pax

, pay
, pbx

and pby
are not required

when computing χ.. . Equation (47) of appendix C shows how the
second derivatives of pa and pb drop out of the expression for

dt 2

d 2
hhhh f and

dt 2

d 2
hhhhg. The final result is a fairly simple symbolic

expression for χ.. .

7. Contact Determination
Given the vast literature on collision detection in the com-

putational geometry and robotics fields, it is with some trepidation
that we present new algorithms for collision detection and deter-
mination of contact points. The algorithms presented are very
basic; nonetheless we have found them to be extremely efficient
for our simulations. In a dynamic simulation, a series of collision
detection problems is encountered. Each problem is similar to the
collision detection problem posed and solved during the previous
time step. The focus of the algorithms presented in this section is
using information from the previous time step to solve the colli-
sion detection problem for the current time step. The collision
detection problems addressed in computational geometry and
robotics are of a different nature.

In the field of computational geometry, collision detection
algorithms are by and large restricted to static geometrical
configurations. Algorithms are typically developed to solve a sin-
gle instance of a problem involving fixed objects in the smallest
asymptotic time complexity. The use of algorithms of this nature
for collision detection during simulation essentially ignores any
information discovered in previous time steps. Gilbert et al.[8]
present an algorithm that efficiently computes the minimum dis-
tance between convex objects. Additionally, the algorithm can
use information from previous time steps for fast initialization,
and would appear to be an attractive candidate for detecting colli-
sions. However, we are not interested in the value of the
minimum distance per se. and we feel that the algorithms
presented below are better suited to our simulation environment.
For the simpler problem of determining the disjointness of two
convex polyhedra with a total of n vertices, algorithms with
asymptotic time complexities of O(n logn) and even O (n) have
been achieved; however, it is not clear that these algorithms are
practically useful for reasonable values of n[8].

In the field of robotics, algorithms are developed for
geometric problems involving objects with specified continuous
motions over some time period; for example, determining the first

23

SIGGRAPH ’90, Dallas Computer Graphics, Volume 24, Number 4, August 1990

collision between polyhedral objects[4]. These algorithms
presuppose known paths for the objects and detect collisions over
the length of the paths. In our case, the paths of the objects are
not known.

We have found that the geometric relationship between
objects in our simulations does not change very much between
successive time steps. As a result, collision detection algorithms
for our simulation environment should be structured to take max-
imum advantage of the geometric coherence between successive
time steps. Our simulator uses contact determination algorithms
that assume a high degree of coherence between time steps. If the
relative displacements of objects between successive time steps
are large, this assumption breaks down. However, our experience
has been that numerical considerations in solving the differential
equations of motion limit the size of the time step. We choose not
to treat the case where an object passes completely through
another object in one time step; one solution to this problem is 4D
space-time swept volume algorithms to detect collisions[13].

In this paper we limit our objects to the union of convex
polyhedra and strictly convex closed surfaces. We will refer to
these polyhedra and curved surfaces as primitives . The first
geometric problem we consider is the pairwise comparison of
primitives to determine inter-penetration.4 Our primary mechan-
ism for exploiting coherence will be through the use of witnesses
to the decision problem of inter-penetration. A witness is some
piece of information that can be used to quickly answer a decision
problem. We will utilize coherence by caching witnesses from
one time step to the next; hopefully a witness from the previous
time step will be a witness during the current time step.

Since primitives are convex, a pair of primitives do not
inter-penetrate if and only if a separating plane between them
exists.5 A separating plane between two objects is a plane such
that each object lies in a different half-space of the plane. A given
plane can be verified to be a separating plane between two convex
polyhedra in time O (n) where n is the total number of vertices of
the two polyhedra. Cundall[5] performed pairwise collision
detection during simulation by initially finding separating planes
that were approximately equidistant from each polyhedron of the
pair. At later time steps, numerical techniques were used to
quickly update the separating planes so that they maintained their
equidistant relationship between pairs of polyhedra. A simpler
solution exists however; for disjoint or contacting convex polyhe-
dra, it can be shown that a separating plane exists which either
embeds at least one face of one of the polyhedra or embeds an
edge from each polyhedron. If a pair of polyhedra are shown not
to inter-penetrate by one of these separating planes, we cache the
face or two edges embedded in the separating plane as a witness.
At the next time step, we use the cached face or edges to form a
new separating plane. In this manner the new separating plane is
obtained simply from the old one without the need for any numer-
ical computations. Even better, by caching the nearest face or
edge to the separating plane from each polyhedron, disjointness
can usually be verified in sublinear time (figure 9).

If two polyhedra are inter-penetrating, it is almost always
the case that either a vertex of one polyhedron is inside the other,
or an edge of one polyhedron has intersected a face of the other.
In this case, the inter-penetrating vertex, or intersecting edge and
face are cached as a witness to the inter-penetration. In subse-
hhhhhhhhhhhhhhhhhhhhh
4 Initial techniques such as hierarchical bounding volumes and spatial subdivision
can be used to limit the number of pairs of primitives considered by this step. This
initial step also benefits greatly by exploiting coherence.
5Note that convexity is crucial as this argument does not hold for concave objects.
The collision detection problem for concave objects is a considerably more difficult
problem than for convex objects.

A

separating plane

cached vertex

B

Figure 9. Sublinear time verification of disjointness based on
cached witnesses.

quent comparisons, the witness is used to quickly check for inter-
penetration. When it is necessary to initially find a witness, a
sophisticated computational geometry algorithm such as Gilbert et
al.[8] might be employed. Currently we use exhaustive search to
initially find a witness; we have found the added expense, amor-
tized over the length of the simulation, to be negligible.

The use of separating planes also makes the contact deter-
mination step simple. Contact points between a pair of polyhedra
separated by a plane P can only occur on the plane P. Given the
separating plane, the contact points are quickly and efficiently
determined by comparing only those faces, edges or vertices coin-
cident with the separating plane. This determination can itself be
performed quickly by caching information from the previous time
step.

For comparing two curved surfaces, we must employ
numerical techniques to determine disjointness. We make use of
the concept of extremal points from section 5 in determining dis-
jointness. Given two disjoint convex curved surfaces, the
extremal points are the points of minimum distance and are a wit-
ness to the disjointness of the surfaces. Otherwise, the extremal
points near the intersection of the surfaces are a witness that the
surfaces do inter-penetrate (figure 6). To find these extremal
points, a non-linear equation solver may be used to solve equation
(9) for pa and pb

6; see Forsythe et al.[7]. However, equation (9)
admits multiple solutions of pa and pb; we are interested in the
solution that globally minimizes ||pa − pb ||.7 Non-linear equation
solvers proceed from some initial estimate of the solution to an
exact solution (within numerical tolerances). If we are initially
finding the extremal points between the surfaces, we require some
rough estimate of pa and pb , so that the solver will converge to the
proper solution. For implicit surfaces, we can initially estimate pa
and pb by intersecting the two surfaces with the line connecting
the centroids of the two surfaces. For parametric surfaces, we can
generate and store a coarse mesh of surface points for each sur-
face and use the parametric coordinates of the minimum distance
pair of points as an initial estimate. Using the initial estimate as a
starting point, the solver converges to the proper solution of the
extremal points.

Once the extremal points pa and pb are determined, they
are cached for the next time step. In subsequent time steps, the
cached extremal points are used as an initial estimate and the
solver converges in a few iterations to the new extremal points.
Furthermore, the accuracy of this initial estimate can be
significantly improved as follows. If in addition to caching the
extremal points pa and pb at time t 0 we cache p

.
a and p

.
b , we can

estimate pa and pb at time t 0 + ∆t by
hhhhhhhhhhhhhhhhhhhhh
6For parametrically defined surfaces, we replace equation (9) with a non-linear equa-
tion that defines the extremal points in terms of parametric coordinates; see appendix
D for details.
7The points pa and pb that maximize the distance between the surfaces satisfy equa-
tion (9), but they are not the solution we are interested in. Parametric surface have
multiple solutions of equation (56) for pa and pb in terms of their parametric coordi-
nates.

24

SIGGRAPH ’90, Dallas Computer Graphics, Volume 24, Number 4, August 1990

pa(t 0 + ∆t) = pa(t 0) + ∆t p
.

a(t 0) (17)

and similarly for pb . (See appendix D for the parametric case).
Improving the accuracy of the initial estimates of pa and pb adds
to the speed and robustness of the algorithm. The derivatives of
p
.

a(t 0) and p
.

b(t 0) can be calculated in terms of determinants of
4 × 4 matrices as described in appendix C. Once two curved sur-
faces have been found not to inter-penetrate, the contact determi-
nation process consists of merely comparing the distance between
the extremal points to some numerical threshold.

Comparisons between a polyhedral primitive and a curved
surface primitive are handled in an analogous manner to contact
between a polyhedron and a curved surface (section 5).

8. Determining the Collision Time
The last problem in the collision detection phase is back-

tracking to the point of a collision (step E of figure 1). During a
simulation, it may happen that two objects A and B come into col-
liding contact at some time tc . Suppose that t 0 was the time of the
previous time step when the objects had not yet collided, and at
time t 1 (t 0 < tc < t 1) it is found that A and B have inter-
penetrated. When this occurs, the simulator makes a prediction tp
of the time tc at which the initial collision occurred, backs up to
time t 0 and then moves forward to time tp . If the simulator finds
that A and B have not yet collided at tp , it assumes that tp < tc and
makes a larger prediction for tc . Conversely, if the simulator finds
that A and B have inter-penetrated at tp , it assumes that tc < tp ,
and makes a smaller prediction for tc . Otherwise, the simulator
has found tc to within numerically accepted tolerances and may
proceed.

Conceptually, this can be viewed as a root finding problem.
Previous papers have solved this root finding problem by using
bisection[13] or regula falsa[1]. The bisection method is
extremely robust, simple to implement, and independent of
geometry; however, it has relatively slow convergence, especially
where great accuracy is required. The regula falsa method
linearly interpolates the distance between A and B at t 0 and the
amount of inter-penetration at t 1 to predict tc . The regula falsa
method handles any geometry as long as measures of separation
and inter-penetration are available; additionally, the method con-
verges faster than bisection. regula falsa is not as robust as bisec-
tion but a hybrid bisection-regula falsa algorithm[7] works well in
practice.

An alternative to regula falsa is Newton’s method.
Newton’s method requires both a measure of separation between
A and B at t 0 and the relative approach velocity at time t 0. These
quantities however are exactly modeled by χ and χ. . Newton’s
method for solving h (t) = 0 near the point t 0 is based on the Tay-
lor series expansion

h (t) = h (t 0) +
n =1
Σ
∞

n !

h (n) (t 0)hhhhhhh(t − t 0)n. (18)

By throwing out terms for n > 1 and replacing h with χ, we obtain
the linear approximation

t = t 0 −
χ. (t 0)

χ(t 0)hhhhh . (19)

While Newton’s method gives better convergence than the regula
falsa method, both regula falsa and Newton’s method consistently
either under-estimate or over-estimate tc for constant (non-zero)
acceleration. Since constant acceleration occurs frequently, it
makes sense to predict tc by using a quadratic model as opposed
to the linear model used by Newton’s method. The quadratic
model requires χ, χ. and χ.. ; section 5 and appendix C show how χ,
χ. and χ.. are calculated for polyhedral and curved objects. Fol-

lowing the derivation of Newton’s algorithm, we predict tc by

χ(t) = χ(t 0) + χ. (t 0)(t − t 0) +
2

χ..(t 0)hhhhh(t − t 0)2 . (20)

Solving for t we obtain

t = t 0 +
χ..(t 0)

−χ. (t 0) ± √dddddddddddddχ. (t 0)2 − 2χ..(t 0)χ(t 0)hhhhhhhhhhhhhhhhhhhhhhhhhhh . (21)

We set tp to be the smallest real root of equation (21) greater than
t 0; if no such root exists, or χ..(t 0) is zero (within numerical toler-
ance), we use Newton’s method. The method is made robust by
incorporating a bisection step whenever convergence is slow[7].
For constant acceleration, equation (21) gives an exact result as
long as χ is a linear measure of the distance.8 For non-constant
acceleration, the quadratic model still converges faster than
Newton’s method, close to tc .

9. Conclusion
Table 1 gives a rough indication of the running time of two

simulations (figures 10 and 11) on a Hewlett Packard 835 work-
station. A "cache miss" means that a new witness was computed
from scratch, while a "cache hit" means that a previously cached
witness was successfully updated to a witness for the current time
step. The first simulation had 97 polygons and 6 curved surfaces
and encountered 60 discontinuities while time stepping. The
second simulation had 89 polygons and 102 curved surfaces and
encountered 343 discontinuities while time stepping.

iii
Figure Total No. Cache Cache CPU

Time Steps Hits Misses Minutesiii

10. Jack 1,475 5,243 42 2.1

11. Dice 4,162 345,793 1,384 78.6iiicc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

Table 1. Running times and caching effectiveness.

Acknowledgements
This research was funded by an AT&T Bell Laboratories

PhD Fellowship and two NSF grants (#DCR8203979 and
#ASC8715478). Simulations were performed on equipment gen-
erously donated by the Hewlett Packard Corporation. Some
displays were computed using an AT&T Pixel Machine, donated
by AT&T.

Appendix A: Rigid Body Motion of Surfaces

The formulation for the constraint function χ between
curved surfaces models the surfaces as time-varying implicit func-
tions F (p, t), F : R 3 × R → R. A point p is on the surface of F at
time t if F (p, t) = 0. We will represent the shape F (p, t) in terms
of a rest function Fr(p) and a rigid body transformation T(p, t).

Let Fr(p) be a time-invariant function from R 3 to R; Fr
defines a rest shape by the equation Fr(p) = 0. Let a rigid body
motion be defined by the affine transformation T : R 3 × R → R 3 by

T(p, t) = c (t) + R (t)p (22)

where R (t) is a 3 × 3 rotation matrix and c (t) is a point in R 3.
Define T̃ as

T̃(p, t) = R T(t)(p − c (t)) (23)
hhhhhhhhhhhhhhhhhhhhh
8For polyhedral contact, χ of equation (3) is a linear measure of distance, and equa-
tion (21) converges in one step to tc for constant accelerations. For curved surfaces,
χ of equation (8) is weighted by ||∇G ||. For reasonably scaled functions, ||∇G || does
not vary much over the range of the prediction.

25

SIGGRAPH ’90, Dallas Computer Graphics, Volume 24, Number 4, August 1990

so that

T̃(T (p, t), t) = T (T̃(p, t), t) = p. (24)

If the linear and angular velocities of the rigid body motion T at
time t are v (t) and ω(t) then

c
.
(t) = v (t), R

.
(t) = ω*(t)R(t) (25)

where ω*(t) is the dual[3, 9] of ω(t).9 Define the point-velocity
function V (p, t) as

V(p, t) = v (t) + ω(t) × (p − c (t)). (26)

Then

T̃
.
(p, t) = I

Lω
*(t)R(t) MO

T
(p − c (t)) − R (t)Tv (t)

= −R (t)T I
Lω(t) × (p−c (t)) + v (t) MO = −R (t)TV(p, t). (27)

We can represent the movement of Fr by the rigid body motion
T (p, t) by defining

F(p, t) = Fr(T̃(p, t)). (28)

If q is some point on Fr then at time t the point T (q, t) is a point of
F since

F(T (q, t), t) = Fr(T̃(T(q, t), t)) = Fr(q) = 0. (29)

Using the above definitions and the relations
∇F(p, t) = R(t)∇Fr(T̃(p, t)) (see appendix B) and Fr ′

T

= ∇Fr ,

F
.
(p, t) = Fr ′(T̃(p, t))T̃

.
(p, t) = Fr ′(T̃(p, t))(−R (t)TV (p, t))

= − I
LR (t)Fr ′(T̃(p, t))T M

O
T
V (p, t) = −∇F(p, t) .V (p, t). (30)

By differentiating equation (30) with respect to p and using
∇V(p, t) = ω*(t)

∇F
.

(p, t) = −F ′′(p, t)V (p, t) − ∇F (p, t) .∇V (p, t)

= −F ′′(p, t)V (p, t) − ∇V (p, t)T∇F (p, t)

= −F ′′(p, t)V (p, t) − ω*(t)T∇F (p, t) (31)

= −F ′′(p, t)V (p, t) + ω(t) × ∇F (p, t).

Differentiating equation (30) with respect to time,

F
..

(p, t) = − I
L∇F

.
(p, t) .V (p, t) + ∇F(p, t) .V

.
(p, t) MO. (32)

Since V (p, t) is the point velocity of p in its rigid body frame,
V
.
(p, t) is the point acceleration of p and is a linear function of the

forces in the system. Thus, F
..

is also a linear function of force.

Appendix B: Rotation of Coordinate Systems

In section 6, the coordinate axes were rotated so that
∇G(pa ,t 0) would be colinear with ẑ, the unit z axis vector. Let R
be the change of basis matrix; R is a rotation matrix such that

R∇G(pa ,t 0) = ||∇G(pa ,t 0)||ẑ. (33)

Note that R is constant with respect to time. Let ∇G 0 and G0′′ be
the derivatives of G in the original coordinate system. In the
rotated coordinate system, the derivatives become

∇G = R∇G 0, ∇G
.

= R∇G 0

.
and G ′′ = RG0′′R T. (34)

The derivatives G
.

and G
..

are invariant under rotation. See Gold-
stein[9] for further discussion.
hhhhhhhhhhhhhhhhhhhhh
9 Given a vector a ∈ R 3, a* is the 3 × 3 (anti-symmetric) matrix such that for any
vector b ∈ R 3, a*b = a × b.

Appendix C: Derivation of χ..

In section 6, a change of functions is introduced by writing
the implicit functions F and G in terms of explicit functions f and
g near the extremal points pa and pb . This change of functions is
made in a coordinate system where both ∇F(pa ,t 0) and
∇G(pb ,t 0) are colinear with the z axis. The explicit functions f
and g are defined by

F(x,y, f(x,y,t), t) = 0 and G(x,y,g(x,y,t), t) = 0. (35)

The existence of f and g is seen by the implicit function theorem.
By differentiating equation (35) we obtain

∂x
∂ fhhh = −

∂z
∂Fhhh

∂x
∂Fhhh

hhhh ,
∂y
∂ fhhh = −

∂z
∂Fhhh

∂y
∂Fhhh

hhhh and
∂t
∂ fhhh = −

∂z
∂Fhhh

∂t
∂Fhhh

hhhh (36)

and similarly for g. Second derivatives of f and g are obtained by
repeated differentiation of equation (35).

Using f and g, condition E 4 of equation (9) may be written
componentwise as

I
J
J
J
L
g(pbx

,pby
,t)

pby

pbx

M
J
J
J
O

−

I
J
J
J
L
f(pax

,pay
,t)

pay

pax

M
J
J
J
O

+ λ1

I
J
J
J
J
J
L ∂z
∂Ghhhh(pb ,t)

∂y
∂Ghhhh(pb ,t)

∂x
∂Ghhhh(pb ,t)

M
J
J
J
J
J
O

=
I
J
L0
0
0 M
J
O

(37)

from which we obtain

λ1 =

∂z
∂Ghhhh(pb ,t)

f(pay
,pay

,t) − g(pbx
,pby

,t)
hhhhhhhhhhhhhhhhhhhhh . (38)

Multiplying equation (37) by −1 and using equation (36) allows
us to rewrite E 4 as

I
J
Lpay

− pby

pax
− pbx

M
J
O
+ (f(pax

,pay
,t) − g(pbx

,pby
,t))

I
J
J
J
L ∂y
∂ghhh(pbx

,pby
,t)

∂x
∂ghhh(pbx

,pby
,t)

M
J
J
J
O

= 0
→

.

(39)

This new condition has one less equation than E 4 because of the
reduction of variables from F to f. In a similar fashion, λ2 of con-
dition E 1 is eliminated and condition E 1 is rewritten as

I
J
J
J
L ∂y

∂ fhhh(pax
,pay

,t)

∂x
∂ fhhh(pax

,pay
,t)

M
J
J
J
O

−

I
J
J
J
L ∂y
∂ghhh(pbx

,pby
,t)

∂x
∂ghhh(pbx

,pby
,t)

M
J
J
J
O

= 0
→

. (40)

Conditions E 2 and E 3 are no longer required since f and g give
explicit definitions of the surfaces. Using the notation

∇f T = (
∂x
∂ fhhh ,

∂y
∂ fhhh) = f ′ (41)

pax
, pay

, pbx
and pby

may be defined as the solution to

I
J
J
K
J
J
L

D 2:

I
J
J
L
pay

− pby

pax
− pbx

M
J
J
O

+ (f(pax
,pay

,t)−g(pbx
,pby

,t))∇g(pbx
,pby

,t) = 0
→

.

D 1: ∇f(pax
,pay

,t) − ∇g(pbx
,pby

,t) = 0
→

(42)

The implicit function theorem for simultaneous equations gives
the result

26

SIGGRAPH ’90, Dallas Computer Graphics, Volume 24, Number 4, August 1990

p
.

ax
= −

J

∂(t,pay
,pbx

,pby
)

∂(D 1,D 2)hhhhhhhhhhhhh

hhhhhhhhhhhhhh , p
.

ay
= −

J

∂(pax
,t,pbx

,pby
)

∂(D 1,D 2)hhhhhhhhhhhhh

hhhhhhhhhhhhhh (43)

(and similarly for p
.

bx
and p

.
by

) where

J =
∂(pax

,pay
,pbx

,pby
)

∂(D 1,D 2)hhhhhhhhhhhhhhh . (44)

The derivatives of paz
and pbz

are simply f
.
(pax

,pay
,t) and

g
.
(pbx

,pby
,t).

Since D 1 and D 2 do not involve paz
and pbz

, let pa and pb

denote (only for the remainder of this appendix) the column vec-
tors (pax

,pay
)T and (pbx

,pby
)T at time t. Similarly, let

p
.

a = (p
.

ax
,p
.

ay
)T and p

.
b = (p

.
bx

,p
.

by
)T at time t. In section 6, we

derived

χ(t) = f(pa ,t) − g(pb ,t). (45)

To obtain χ.. , we must doubly differentiate f and g with respect to
time. Using the chain rule,

dt
dhhh f(pa ,t) = f ′(pa ,t)p

.
a + f

.
(pa ,t) = ∇f(pa ,t)Tp

.
a + f

.
(pa ,t). (46)

Then

dt 2

d 2
hhhh f(pa ,t) = I

Lf ′′(pa ,t)p
.

a + ∇f
.

(pa ,t) MO
T
p
.

a +

∇f(pa ,t)Tp
..

a + f
. ′(pa ,t)p

.
a + f

..
(pa ,t) (47)

= p
.

a
T

f ′′(pa ,t)p
.

a + 2∇f
.

(pa ,t)Tp
.

a + ∇f(pa ,t)Tp
..

a + f
..
(pa ,t).

From equation (36) and the fact that ∇F(pa ,t 0) is colinear with
the z axis,

∇f(pa ,t 0)T = (0, 0)T. (48)

This yields

dt 2

d 2
hhhh f(pa ,t 0) = p

.
a

T
f ′′(pa ,t 0)p

.
a + 2∇f

.
(pa ,t 0)Tp

.
a + f

..
(pa ,t 0). (49)

A similar expression is obtained for g. Thus, neither p
..

a nor p
..

b is
required for the symbolic computation of χ..(t 0). Equation (49) is
a linear function of F

..
by its last term, f

..
(pa ,t 0) which is in turn a

linear function of the contact forces. Thus, χ..(t 0) is itself a linear
function of the contact forces.

Appendix D: Parametrically Defined Surfaces

Appendix C derived χ.. by defining explicit surfaces f and g
that modeled the implicit surfaces F and G near extremal points.
χ.. was then written in terms of the derivatives of the extremal
points and the derivatives of f and g; in turn, the derivatives of f
and g were expressed in terms of the implicit functions F and G.
Given two parametric surfaces, S and T, the same thing can be
done. We will first show how to express the derivatives of f and g
in terms of the parametric functions S and T. We will then show
how the extremal points and their derivatives are defined for
parametric functions. This enables χ.. to be computed as shown in
appendix C.

Let a time-dependent parametric function S(u,v,t),
S : R 2 × R →R 3, define a surface. We will write S in terms of
three component functions Sx , Sy and Sz as

S(u,v,t) = I
LSx(u,v,t), Sy(u,v,t), Sz(u,v,t) MO

T.
(50)

As in appendix A, S is assumed to be the rigid body motion of
some time-invariant base shape S 0;

S(u,v,t) = R(t)S 0(u,v) + c(t). (51)

Differentiating with respect to t,

∂t
∂Shhh(u,v,t) = ω*(t)R(t)S 0(u,v) + v (t)

= ω*(t) I
LR(t)S 0(u,v) + c (t) − c (t) MO + v (t) (52)

= ω × I
LS (u,v,t) − c (t) MO + v (t).

Assume that at time t 0, the surface normal of S at the point
S(u 0,v 0,t 0) is colinear with the z axis. As in appendix C, we let
f(x,y,t) explicitly describe S near S(u 0,v 0,t 0). The definition of f
is

f(Sx(u,v,t),Sy(u,v,t), t) = Sz(u,v,t). (53)

The existence of f follows from the implicit function theorem.
Differentiating equation (53) with respect to u, v, and t, we obtain
the system

∂x

∂ fhhh
∂t

∂Sxhhhh +
∂y

∂ fhhh
∂t

∂Syhhhh +
∂t

∂ fhhh =
∂t

∂Szhhhh

∂x

∂ fhhh
∂v

∂Sxhhhh +
∂y

∂ fhhh
∂v

∂Syhhhh =
∂v

∂Szhhhh

∂x

∂ fhhh
∂u

∂Sxhhhh +
∂y

∂ fhhh
∂u

∂Syhhhh =
∂u

∂Szhhhh

. (54)

Thus, the first partials of f may be expressed in terms of partial
derivatives of the parametric function S by solving a simple linear
system. The second partials of f are obtained by differentiating
the system of equations (54) and solving another linear system. A
normal vector SN(u 0,v 0,t 0) to S(u 0,v 0,t 0) at time t 0 is given by

SN(u 0,v 0,t 0) =
∂u
∂Shhh(u 0,v 0,t 0) ×

∂v
∂Shhh(u 0,v 0,t 0). (55)

Suppose that T(u,v,t) is the parametric function for a second sur-
face, with TN defined accordingly. Let the parametric coordinates
of the extremal points pa and pb (where pa is on S and pb is on T)
be (ua ,va) and (ub ,vb). The analogue to equation (9) is then

I
K
L E 2: (T (ub ,vb ,t) − S (ua ,va ,t)) + λ1TN(ub ,vb ,t) = 0

→
.

E 1: SN(ua ,va ,t) + λ2TN(ub ,vb ,t) = 0
→

(56)

As in section 5, we may regard ua ,va ,ub and vb as functions of
time; derivatives are then given by

u
.

a = −
J

∂(t,va ,ub ,vb)

∂(E 1,E 2)hhhhhhhhhhh

hhhhhhhhhhhh , v
.

a = −
J

∂(ua ,t,ub ,vb)

∂(E 1,E 2)hhhhhhhhhhh

hhhhhhhhhhhh (57)

(and similarly for u
.

b and v
.

b) where

J =
∂(ua ,va ,ub ,vb)

∂(E 1,E 2)hhhhhhhhhhhhh . (58)

Given the derivatives of the parametric coordinates of the
extremal points, we can calculate the needed derivatives of pax

,
pay

, pbx
and pby

(for equation (49)). From equation (50) and since
pa = S(ua ,va ,t),

p
.

ax
=

∂u

∂Sx(ua ,va ,t)hhhhhhhhhhhu
.

a +
∂v

∂Sx(ua ,va ,t)hhhhhhhhhhhv
.

a +
∂t

∂Sx(ua ,va ,t)hhhhhhhhhhh (59)

and similarly for p
.

ay
, p

.
bx

and p
.

by
.

For contact determination, equation (56) is solved (in place
of equation (9)) to find (ua ,va) and (ub ,vb). The extremal points
pa and pb are then cached in terms of their parametric coordinates

27

SIGGRAPH ’90, Dallas Computer Graphics, Volume 24, Number 4, August 1990

(ua ,va) and (ub ,vb). Equation (17) is replaced by

ua(t 0 + ∆t) = ua(t 0) + ∆t ua
.

(t 0) (60)

and similarly for va , ub and vb .

Appendix E: Ill-conditioned Jacobian Determinants

Given the formulation of p
.

a and p
.

b by equation (43) in
appendix C, a natural concern arises over the possible ill-

conditioning of the Jacobian matrix
∂(pax

,pay
,pbx

,pby
)

∂(D 1,D 2)hhhhhhhhhhhhhhh (and simi-

larly for the parametric case). An examination of the Jacobian
shows that its condition depends on the Gaussian curvatures of F
and G at the extremal points. As long as at least one of the two
curvatures is non-zero the Jacobian determinant is non-zero.
However, if both curvatures become zero or near zero at the
extremal points, the Jacobian also becomes zero or near zero and
p
.

a and p
.

b diverge. Thus, the overall derivation for forces between
pairs of curved objects is meant to be applied to pairs where at
least one of the objects really is curved at the contact point. In
regions where both curvatures approach but do not attain zero, the
contact force can change rapidly. If both curvatures achieve zero
simultaneously, the contact force may be unbounded (although its
integral is not). The former case can be handled (inefficiently) by
taking sufficiently small time steps. The latter case would seem to
require some sort of analytic integral of the contact force; this is a
topic for further research.

References

1. Baraff, D., ‘‘Analytical methods for dynamic simulation of
non-penetrating rigid bodies,’’ Computer Graphics (Proc.
SIGGRAPH), vol. 23, pp. 223-232, 1989.

2. Baraff, D., ‘‘Determining frictional inconsistency for rigid
bodies is NP-complete,’’ Technical Report TR 90-1112,
Department of Computer Science, Cornell University,
1990.

3. Barzel, R. and Barr, A.H., ‘‘A modeling system based on
dynamic constraints,’’ Computer Graphics (Proc. SIG-
GRAPH), vol. 22, pp. 179-188, 1988.

4. Canny, J., ‘‘Collision detection for moving polyhedra,’’
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 8, no. 2, pp. 200-209, 1986.

5. Cundall, P.A., ‘‘Formulation of a three-dimensional dis-
tinct element model — Part I. A scheme to represent con-
tacts in a system composed of many polyhedral blocks,’’
International Journal of Rock Mechanics, Mineral Science
and Geomechanics, vol. 25, no. 3, pp. 107-116, 1988.

6. Featherstone, R., Robot Dynamics Algorithms, Kluwer,
Boston, 1987.

7. Forsythe, G.E., Malcolm, M.A., and Moler, C.B., Com-
puter Methods for Mathematical Computations, Prentice
Hall, Inc., Englewood Cliffs, 1977.

8. Gilbert, E.G., Johnson, D.W., and Keerthi, S.S., ‘‘A fast
procedure for computing the distance between complex
objects in three space,’’ IEEE Journal of Robotics and
Automation, vol. 4, pp. 193-203, 1988.

9. Goldstein, H., Classical Mechanics, Addison-Wesley,
Reading, 1983.

10. Goyal, S., ‘‘Second order kinematic constraint between
two bodies rolling, twisting and slipping against each other
while maintaining point contact,’’ Technical Report TR
89-1043, Department of Computer Science, Cornell
University, 1989.

11. Lötstedt, P., ‘‘Mechanical systems of rigid bodies subject
to unilateral constraints,’’ SIAM Journal of Applied
Mathematics, vol. 42, no. 2, pp. 281-296, 1982.

12. Lötstedt, P., ‘‘Numerical simulation of time-dependent
contact friction problems in rigid body mechanics,’’ SIAM
Journal of Scientific Statistical Computing, vol. 5, no. 2,
pp. 370-393, 1984.

13. Moore, M. and Wilhelms, J., ‘‘Collision detection and
response for computer animation,’’ Computer Graphics
(Proc. SIGGRAPH), vol. 22, pp. 289-298, 1988.

14. Murty, K.G., Linear Complementarity, Linear and Non-
linear Programming, Heldermann Verlag, Berlin, 1988.

15. Neĭmark, Ju.I. and Fufaev, N.A., Dynamics of Nonholo-
nomic Systems, American Mathematical Society, 1972.

16. Taylor, A.E. and Mann, R.M., Advanced Calculus, John
Wiley & Sons, Inc., New York, 1983.

17. Tomlin, J.A., ‘‘Robust implementation of Lemke’s method
for the linear complementarity problem,’’ Technical Report
SOL 76-24, Systems Optimization Laboratory, Department
of Operations Research, Stanford University, 1976.

Figure 10. Falling jack.

Figure 11. Falling dice.

28

