Radiosity Redistribution for
Dynamic Environments

David W. George, Francois X. Sillion, and Donald P. Greenberg

Cornell University

‘We exterid the radiosity algorithm to dynamic environ-
ments, pmwdmg global-illumination simulations to
sscenes that are modified interactively. The illumination
effects infroduced by a change in position, shape, or attri-

, butes of any objects in the scene are computed very
 rapidly by redistributing the energy already exchanged
: between cb;ects Correcnans are made by shooting posi-

' aigonthm weids axeei')
solutions at interactive speeds.

The depth cues and visual realism provided by
global-illumination algorithms greatly improve the
ability of the user to understand the content of an
environment. Although current versions of the ray-
tracing and radiosity algorithms provide the neces-
sary shadows and reflections, their computation time
is too long to be applicable to changing environments.
Techniques are needed to provide global-illumina-
tion effects, such as shadows with penumbrae, to en-
vironments that are being manipulated interactively.
Such techniques must be fast enough to allow the
user to interact with the environment, immediately
providing a new global-illumination solution when-

26 0272-17-16/90/0700-0026301.00 ©1990 IEEE

ever changes to the scene are made. The user must be
able to add, remove, change, or move objects without
restrictions on their geometry, their surface character-
istics, or the path of their motion. The user must also
be able to move the observer position freely through-
out the environment.

We present an algorithm, based on progressive-re-
finement radiosity, which approaches interactive
speeds and meets all these criteria. In response to a
change in the environment, the algorithm updates the
existing radiosity solution. For moderately complex
environments, the algorithm provides a good approx-
imation to the new radiosity solution in near real time

IEEE Computer Graphics & Applications

on today’s workstations. Given more time, the algo-
rithm continues to refine the solution and eventually
provides a new converged solution.

The algorithm capitalizes on temporal coherence in
object space, recognizing that the changes in the envi-
ronment from one time step to the next are likely to be
small. To achieve interactive speeds, the global-illu-
mination solution is not completely recomputed each
time the environment changes. Rather, the existing
solution is modified. Thus, computation is initially
limited to the parts of the environment that have
changed. Furthermore, the algorithm processes
changes in the environment in order of decreasing
importance, handling the greatest energy changes
first.

Until recently, the calculation cost for realistic im-
aging was considered too high to be applied to non-
static scenes. Previous efforts to display dynamic
environments using global illumination have been
limited to scenes in which the paths of all dynamic
objects are known in advance.'?

Radiosity
The original radiosity method solved the diffuse
global-illumination problem for environments made
up of polygonal patches.’ The amount of light leaving
each patch can be expressed as a combination of its
emitted light and its reflected light. The radiosity
leaving patch i is given by

B;=E;+p; Y, FB; (1)
=

where

B; =radiosity of patch i
(energy\unit area\unit time)

E; = radiosity emitted from patch i
(energy\unit area\unit time)

F;; = form factor from itoj -
(fraction of all energy leaving patch i
that arrives at patch j)

p; = reflectivity of patch i

n = number of patches in the environment

All B; values can be solved using either the full-ma-
trix method or the progressive-refinement approach.
The full-matrix algorithm solves each B; value, one at
a time, by “gathering” light contributions from all
other patches in the scene. The progressive-refine-

July 1990

ment approach simultaneously solves all patch
radiosities by repeatedly choosing a patch to “shoot”
and distributing that patch’s energy to all other
patches.? The latter approach is attractive because it
provides a very good approximation to the final solu-
tion after only a few iterations.

Errors are frequently introduced in the form-factor
calculation because of the discretization of the envi-
ronment or the resolution of the visibility calcula-
tion.? The quality of the solution can be improved by
patch subdivision® and by the use of ray tracing to
calculate form factors.” Both techniques are used in
the form-factor calculations for the redistribution al-
gorithm, which is described in the following sections.

Modification of an existing
radiosity solution

Ultimately, the radiosity approach will be useful for
dynamically changing environments only if the
radiosity solution can be updated very quickly in re-
sponse to user input. Unfortunately, complete recom-
putation of the solution is currently too slow. This
section describes how—starting with a radiosity solu-
tion computed using the progressive-refinement
radiosity algorithm—a progressive transition to the
new solution can be achieved.

By using a second level of progressive refinement,
the energy that has already been “propagated” is “re-
distributed,” yielding a good approximation to the
newly converged solution very quickly. A single iter-
ation of the traditional progressive-refinement
radiosity algorithm is referred to as a propagation
operation, because it propagates energy through the
environment. A different operation, called redistribu-
tion, computes a correction for the energy leaving a
given patch. This accounts for the changes in the en-
vironment.

Redistribution of the energy

The energy in an environment is redistributed
whenever objects are added, removed, moved, or
changed.

Adding an object

Consider the work necessary to adjust a radiosity
solution when a new object is added to the environ-
ment. The energy that has been propagated through
the environment must now be redistributed to ac-
count for the new object. Some patches will now re-

27

ceive more energy, and some will
receive less (see Figure 1).
Obviously, the patches on the
newly introduced object will re-
ceive more energy in the new so-
lution than in the original
solution. During the initial propa-
gation process, the new object
was not in the environment, so it
did not receive any energy.
Patches on the new object, which
are now visible from any illumi-
nated patch, should receive their
share of the energy propagated
from that patch. The correction is
made by shooting “positive” en-
ergy from that patch toward visi-
ble patches on the new object.
Patches in the shadow of the
new object will receive less en-
ergy than in the original solution.

&~ shooting patch

new object
|/ positive redistribution energy

negative redistribution energy

/

Figure 1. Patches on the new object
receive more of the energy propa-
gated from a patch, and patches oc-
cluded by the new object receive less
energy.

the appropriate changes, and
adding it back into the environ-
ment.

Changing illumination attri-
butes, such as reflectivity or self-
emittance of an object, is a
simpler problem, because it is
sufficient to compute and propa-
gate a radiosity correction for
each patch on the object.® No re-
distribution of other patches’ en-
ergy is required.

A mathematical foundation

A mathematical foundation for
energy redistribution is derived
from the basic radiosity equation
(see Equation 1). For simplicity,
we consider only the “add ob-

If a patch is partially or com-

pletely occluded from an illumi-

nated patch by the new object,

then some of the energy previously received from the
illuminated patch should be canceled. This is accom-
plished by shooting “negative” energy.?

If the most influential patches in the environment
redistribute their energy first, a good approximation
to a new solution is obtained after only a few redistri-
bution shots. We discuss methods for rating each
patch’s importance later.

Eventually, patches that have received energy ad-
justments will propagate those adjustments through
the environment. That is, each patch that has received
redistribution energy will shoot some fraction of that
energy to other patches.

Removing, moving, or changing an object

The result of removing an object from the environ-
ment is nearly symmetric to the result of adding one.
From each of the most important patches in the envi-
ronment, positive energy is shot toward patches that
are no longer occluded from the shooting patch by the
disappearing object. This erases the object’s shadow.
The radiosities of patches on the removed object are
set to zero because the object is no longer in the envi-
ronment. Energy that was distributed by patches on
the dynamic object is canceled by shooting negative
energy.

Moving an object or changing its shape can be re-
duced to removing it from the environment, making

28

ject” operation here.

In the radiosity equation for a
changing environment, time-de-
pendent values are represented

by specifying the time as a superscript. Values for the
original radiosity solution are represented by super-
script t — 1, and values for the new radiosity solution,
which must be computed, are represented by super-
script t. Superscript At is used to represent changes in
time-dependent values between time ¢ — 1 and time ¢.

We can write the basic radiosity equation as a time-
dependent equation.

n

Bi=E;+p;), FiB (2a)
1
and
B =E+p; Y, F;'B (2b)
=

Using the relations B = B;" + B} and Fj;= F}' + F};,
we can rewrite Equation 2a in terms of the known
values from the previous time step (t — 1) plus the

incremental changes during the period At.

B + BY=E +p, >, (F§'+F) (B} + B
=1

(3)

Expanding all terms and using Equation 2b to subtract
B'! from both sides gives the equivalent expression.

IEEE Computer Graphics & Applications

n n
BY =p; Z FAx,t Btj_l +p, Fﬁj Bﬁt 4
1 j=1

A redistribution term, R;, is defined to be

n
Ri=p;y F}BY! (5)
o

Substituting Equation 5 into Equation 4 gives the
radiosity redistribution equation.

n
BY =R;+p; Z FﬁfB;“ (6)
1

The radiosity redistribution equation (Equation 6) is
in the same form as the basic radiosity equation
(Equation 1). There are only two differences: The
emission term, E;, has been replaced by the redistribu-
tion term, A;, and the unknown variable in the equa-
tion has changed from B!to BY. Thus, we can find B,
the change in radiosity at each patch, in two steps: (1)
compute all redistribution terms, and (2) solve BA!
with the traditional radiosity techniques used to solve
B,

i

The redistribution algorithm

This algorithm computes the redistribution term for
each patch in the environment.

“Shooting” approach

The redistribution terms can be computed using ei-
ther “gathering” or “shooting.” With gathering, R; is
computed one patch at a time. With shooting, each
patch can shoot all of its redistribution energy, par-
tially solving for many patches’ R; terms with each
shot. Patch j shoots its redistribution energy by adding
p; F} BY" to R, for each patch i so that Fii#0. If the
most important patches shoot their redistribution en-
ergy first, then many R; terms approach their final
value after a small number of shots. Therefore, shoot-
ing is the preferred method for computing redistribu-
tion terms.

Positive and negative corrections

Suppose that a new object is added to the environ-
ment and that patch j is chosen to shoot its redistribu-
tion energy. Patches in the environment that have
changed form factors with respect to j (that is to say,
the set of i so that F%;;e 0) fall into two categories:
patches on the new object and patches that have be-
come occluded from j by the new object.

July 1990

Each patch i on the new object was previously not in
the environment, so F';' = 0. In the new environment,
some of those patches may be visible to j, in which
case Ff = F}/ > 0. Therefore, j shoots “positive” redis-
tribution energy toward patches on the new object
(see Figure 1).

Patches whose visibility from j has been fully or
partially occluded by the new object have decreasing
form factors with respect to j. For those patches,
F% < 0; therefore, j shoots “negative” redistribution
energy toward them (see Figure 1). Note that both
F%! and F}; must be computed to evaluate F

Using partially converged solutions

We can also use the energy-redistribution algorithm
to adjust partially converged radiosity solutions. Only
the energy that was propagated before the environ-
ment changed should be redistributed. Thus, the
radiosity subject to redistribution from patch j equals
B, - AB;, where AB, is the component of B; that patch j
had not shot at the time of the change.

Algorithm

The algorithm to redistribute a single patch’s energy
is given in Figure 2. The find_most_important_patch
and find_patches_in_shadow operations are de-
scribed next.

Implementation

We designed the current implementation for inter-
active use, where the user constantly supplies input
by adding, moving, deleting, or changing objects in
the environment. A simple model for the implemen-
tation is shown in Figure 3; a more complete model is
presented in Figure 4.

Finding the patches in shadow

Toredistribute a patch’s energy, form factors must be
computed from that patch to patches on the new ob-
ject as well as patches occluded by the new object.
Before redistributing a patch’s energy, a shadow vol-
ume is constructed to determine which patches might
be occluded by the new object.® Thus, we do not con-
sider a large number of patches whose form factors
have not changed. To compute the form factors that
have changed, we used ray-tracing techniques.”

Patch importance

Due to the time limitations required for interactivity
while the user is supplying input, only a few patches
can redistribute their energy before the display is up-

29

j = find_most_important_patch();

Bipoot = B;— AB;; /* energy shot in the past */
/*shoot positive energy toward the new object */
for i = each patch on the new_object’

Rdist = pr‘F?thshoot;

B;= B; + Rdist,
AB; = AB; + Rdist;
endfor

/* shoot negative energy toward the new object’s
shadow */
shadow_list = find_patches_in_shadow
(j, new_object);
for i = each patch in the shadow_list'
Rdist = =1 X p,F}Bopoos

B,= B, + Rdist;
AB; = AB; + Rdist;
endfor

Figure 2. Pseudocode for a single redistribution shot.

*If patch subdivision is used, energy is shot to sample points instead of
patches.

|

User Input -

Input: "Add Object”

ﬁw Object to Environment I

Rate Redistribution importance
Rate each patch's importance for redistribution
a the nevw object Section 4.2}

! Propagate Emitters on Object

I For j = each patch on the new object that has
{ unshet radiosity. propagaie |'s energy.
I

|

|

I

Interrupt upen user input

|

1

1

|

|

| -—
é_ g

1

I

|

|

!

|

|

Redistribute
tn order of decreasing imponance. shoot each

patch's redistibution energy toward the new
object and its shadow.

e

Figure 3. A simple model for an inter-
active implementation. Once inside
the shaded area, the display is up-
dated and the input device is polled
after every few operations. If new
input is received, the algorithm is in-
terrupted.

dated and more input is accepted. Therefore, the few
patches that are chosen should be those with the most
energy toredistribute. In contrast to the usual progres-

30

sive-refinement radiosity algorithm, where the rele-
vant ranking parameter is the total unshot energy at
each patch, only the energy shot toward the dynamic
object is considered.

To accelerate the computational speed, a heuristic
method can be used to predict which patches will
shoot the most redistribution energy to the object. One
such heuristic algorithm uses a quick estimate of the
relative amounts of energy that each patch would
shoot toward the new object. If a sample point, s, is
chosen, for example, in the geometric center of the
dynamic object, an estimate of the energy received at
s from every patch i in the environment can be ob-
tained very rapidly. Assume a differential area ds,
positioned at s, with its normal always pointing to-
ward i. An estimated form factor between ds and
patch i is computed. The product of that form factor
and the radiosity of patch i is used to rank patch i in
the shooting order of the patches.

If there are multiple dynamic objects or multiple
sample points within a single dynamic object, then
the relative importance of shooting patch iis found by
summing the estimated values computed at all sam-
ple points.

The accuracy of the estimate depends on three fac-
tors. First, the new object must be small relative to the
distance between s and i to avoid inaccuracies in the
form-factor calculation.® Second, the estimate will be
more accurate if the projected area of the new object is
nearly the same in all directions, since the actual
amount of energy that patch i would shoot toward the
object is proportional to the area of the object pro-
jected in the direction of i. Third, the estimate will be
inaccurate if the sample point is occluded from i
while some parts of the new object are not occluded,
or vice versa. Results generated using this heuristic
approach are presented in the section on our results.

Interleaving redistribution and propagation
shots

When a new object is added, many patches in the
environment may have unshot radiosity. If the new
object is an emitter, patches on its surface have
radiosity to propagate. If the initial radiosity solution
is not converged, other patches have unshot radiosity
as well. After several redistribution shots, additional
unshot radiosity will have accumulated at patches on
the dynamic object, and unshot negative radiosity
will have accumulated at shadow patches. To reach a
fully converged solution, we must propagate all un-
shot radiosities throughout the environment.

IEEE Computer Graphics & Applications

Propagation and redistribution shots can be inter-
leaved. We discuss two possible interleaving strate-
gies below.

Strategy one: Redistribute first

The first strategy gives priority to redistribution
shots. When an object is added to the scene, patches
are chosen in order of decreasing importance to shoot
their redistribution energy. Redistribution continues
until the amount of energy redistributed during each
iteration falls below some energy threshold. This
threshold may be zero, in which case all patches’
energy is redistributed before any further energy is
propagated.

After the threshold is reached, propagation shots are
interleaved with any remaining redistribution shots.
We need a heuristic method to choose between the
patch with the most energy to redistribute and the
patch with the most unshot propagation energy. Note
that any energy propagated after an object was added
is not redistributed.

This interleaving strategy is based on the observa-
tion that the user is normally perceptually focused on
the changing parts of the scene. The portions of the
image with the greatest changes are the dynamic ob-
jects and their shadow regions. Therefore, redistribu-
tion shots are given priority to refine these parts of the
environment quickly.

If a new object is an emitter, the user’s attention is
focused on the effect that its light source has on the
environment. In this case, light energy at patches on
the dynamic object is propagated before any energy is
redistributed.

This strategy quickly reduces radiosity errors at
patches on the new object and in its shadow. Note that
each redistribution shot is much faster than a propa-
gation shot, because redistribution shots affect only
the dynamic object and its shadow region.

In Figure 4, we present this strategy by the path
branching to the left after the “propagate emitters on
object” box.

Strategy two: Interleave redistribution and
propagation

In the second strategy, we interleave propagation
and redistribution shots completely (see the branch to
the right in Figure 4). Before each shot, we compare
the patch with the most unshot propagation energy to
the patch with the most energy to redistribute. Redis-
tribution shots only adjust for the most recent change
in the environment; this restriction will be lifted in
the next section.

July 1990

Userlpput K ——— — —— ———— |
“Sefect Object” “Change Object |
. P
Unselect Object \l/ |
Remove Object I Add Objectl Change Ob]ectJ |
N
53
I Rate Redistribution iImportance l i z
; B
[Make Log Entry l [
I
(e pm——————= e - 1
I I Propagate Emitters on Ob|ec12’3 l | | -
| T - I,
\ Strategy One Strategy Two | 1
! Redistribute’ =
1 untl redistribution energy falls below threshoid. !
I |
(N2 \
| Interleave Propagation and Redistribution |
06 ane ot *he fallowing; 11 shoot prapagation energy. (2) redistribute™ in response to mast
| recent mput. or (3) redistribute in respanse to an entry in the log. Repeat forever |
e d

Figure 4. A complete model of the interactive imple-
mentation. Paths through the flow chart are color
coded for the three different types of user input.

'Log entry is either "remove object” or "add object,” depending on input.
‘If input is “select object.” negative energy is propagated from each patch on
the object that shot energy in the past,

‘Ifinput is “change object.” radiosity changes are stored in a separate buffer.

This strategy provides visualization of two effects
more quickly than the first strategy. First, light re-
flected from the dynamic object may be propagated
very quickly. Second, patches in the dynamic object’s
shadow may propagate their negative energy much
earlier.

Unlike the first strategy, there is no guarantee that
errors on a new object’s surfaces and in its shadows
are reduced quickly.

Using a log to eliminate error

The cost of providing interactivity is that error is
introduced into the radiosity solution. Whenever the
user specifies a change to the environment, the solu-
tion process is interrupted, as shown in Figure 3. En-
ergy that has not been redistributed at the time of the
interrupt is never redistributed, causing the radiosity
solution to converge to an incorrect solution.

This error can be eliminated at a later time if we keep
a log of the history of all changes to the environment.
Each log entry records a single environment change
and the patch with the most energy left to redistribute
in response to the change.

To minimize the number of events stored in the log,
we record a series of changes to a single object as a
single “remove” and “add” operation. When the user
selects an object for change, the object is removed
from the radiosity solution. While the object is se-
lected, radiosity that is redistributed to adjust for
changes of the object is stored separately, added to the
radiosity solution only at display time, and erased if

31

S

1. Remove object from environment
when it is selected

2. Temporarily add objects at
intermediate positions

©

3. Add object when it is unselected

Figure 5. Reducing a series of changes, in this case
“move” operations, to a single “remove” and “add”
operation.

the object is changed again. Because these intermedi-
ate changes are temporary, they do not introduce any

Redistribution
Algorithm

Progressive
Radiosity

Time: 34 sec. Time: 0.3 sec.

error into the solution. When the object is unselected,
it is added back into the environment. Figure 5 shows
a cube being selected, moved through a room, and
unselected.

Results

We have presented the performance of the redistri-
bution algorithm for two changing environments, one
simple and one complex. In response to changes in
each of the environments, the redistribution algo-
rithm converges from the previous radiosity solution
to a new solution much faster than the traditional
progressive-refinement radiosity algorithm.

Statistics for test environments

The rate of convergence of each algorithm was mea-
sured by plotting the algorithm’s solution quality ver-
sus its execution time. The quality of a partial solution
is determined by comparing it to a converged solution
for the same environment. For each patch, we convert
the difference between current and converged

Progressive
Radiosity

Redistribution
Algorithm

Time: 139 sec.

Time: 850 sec.

d

Figure 6. Comparison of the progressive-refinement and redistribution algorithms for the “Cube” scene (450
patches, 1,750 sample points). (a) Converged without cube, (b) Converged with cube, (c) Comparison after two

iterations, (d) Comparison after 50 iterations.

32
U-M-1

IEEE Computer Graphics & Applications

Due to a lack of contrast between text and background, this page did not

reproduce well

l

Redistribution
Algorithm

Progressive
Radiosity

Time: 11920 sec.

C

Time: 46.6 sec.

Redistribution
Algorithm

Progressive
Radiosity

Time: 2586 min.
d

Time: 209 min.

Figure 7. Comparison of the progressive refinement and redistribution algorithms for the “Robot” scene
(12,700 patches, 45,900 sample points). (a) Converged without robot, (b) Converged with robot, (c) Compari-
son after five iterations, (d) Comparison after 100 iterations.

radiosity values to the CIE XYZ color system, and we
find the difference in luminance (the Y coordinate)
between the two. To compute the error term, the root
mean square of the area-weighted luminance differ-
ences is computed.

PRCHESGHTY
Error = =

n (7)
2 (PPA)
=1
This error term is not a good measure of the per-
ceived change to the environment when a new object
is added. The addition of a new object causes the
radiosity of a few patches to change very much, but
most patches are barely affected, so the perceived dif-
ference is much larger than the error term indicates.
Therefore, an alternative error term was also com-
puted using only the 1 percent of the patches whose
radiosities change the most between the previous
converged solution (without the new object) and the

July 1990
U-M-I

new converged solution (with the object). In the
“Cube” environment (see Figure 6), for example, the
patches changing the most are on the cube and in the
shadows cast on the table.

In Figures 6 and 7, we illustrate a comparison of the
redistribution algorithm and the progressive-refine-
ment radiosi.y algorithm for simple and complex
changing environments. In both cases, we present
fully converged reference solutions with and without
a dynamic object. We then compared the two algo-
rithms at different stages in the computation after
adding the object to the scene.

Conclusion and future research

We have extended the progressive-refinement
radiosity method to environments that change over
time. The new redistribution algorithm uses progres-
sive refinement and object-space coherence to update
the existing radiosity solution when a change in the
environment takes place. For small and moderately

33

Due to a lack of contrast between text ard background, this page did not

reproduce well

sized environments, a good approximation to the new
radiosity solution can be provided at interactive rates.

As the complexity of the environments increases,
however, updates to the radiosity solution become too
slow for use in interactive applications. Although
faster processors will be available in the future, the
complexity of environments will continue to grow as
well. Future research should concentrate on the
parallelization of this algorithm.

Temporal coherence should be used to reduce com-
putation. For example, patches that remain com-
pletely occluded from a light source by moving
objects for several frames should retain redistribution
energy from one frame to the next.

These topics are currently under investigation.
However, we believe that the use of object coherence
and the concept of shooting positive and negative
energy within the context of a progressive-refinement
solution will ultimately be the correct strategy for
providing interactive global-illumination simulation
for dynamic environments. u

Acknowledgments

This research was conducted at Cornell University’s
Program of Computer Graphics under a National Sci-
ence Foundation grant (#DCR-8203979) entitled “In-
teractive Input and Display Techniques.” The authors
gratefully acknowledge the generous equipment grant
from Hewlett Packard, on whose workstations this
research was conducted. The Cube Room was mod-
eled by Rod Recker, and the Robot Room was created
by Wendy Burgess and Keith Howie. The photogra-
phy was done by Emil Ghinger. Thanks to Roy Hall for
his useful comments on this article and to CUPCG
students and staff who helped with our research.

References

1. A.S. Glassner, “Spacetime Ray Tracing for Animation,” CG&A,
Vol. 8, No. 2, Mar. 1988, pp.60-70.

2. D.R. Baum et al., “The Back-Buffer Algorithm: An Extension of
the Radiosity Method to Dynamic Environments,” Visual Com-
puter, Vol. 2, No. 5, Sept. 1986, pp. 298-308.

3. C.M. Goral et al., “Modeling the Interaction of Light Between
Diffuse Surfaces,” Computer Graphics (Proc. SIGGRAPH), Vol.
18, No. 3, July, 1984, pp. 213-222.

4. M.F. Cohen et al., “A Progressive Refinement Approach to Fast
Radiosity Image Generation,” Computer Graphics (Proc. SIG-
GRAPH), Vol. 22, No. 3, Aug. 1988, pp.75-84.

34

5. D.R. Baum, H.E. Rushmeier, and J.M. Winget. “Improving
Radiosity Solutions Through the Use of Analytically Deter-
mined Form-Factors," Computer Graphics (Proc. SIGGRAPH),
Vol. 23. No. 3, Aug. 1989, pp. 325-334.

6. M.F. Cohen et al.. “An Efficient Radiosity Approach for Realis-
tic Image Synthesis,” CG&A, Vol. 6, No. 3, Mar. 1986, pp. 26-35.

7.]J.R. Wallace, K.A. Elmquist, and E.A. Haines, “A Ray Tracing
Algorithm for Progressive Radiosity,” Computer Graphics
(Proc. SIGGRAPH), Vol. 23. No. 3. Aug. 1989, pp. 315-324.

8. C.Puech, F. Sillion, and C. Vedel, “Improving Interaction with
Radiosity-Based Lighting Simulation Programs,” Proc. Symp.
Interactive 3D Graphics, Mar. 1990, ACM, N.Y., pp. 51-57.

9. T. Nishita and E. Nakamae, “Continuous Tone Representation
of Three-Dimensional Objects Taking Account of Shadows and
Interreflections,” Computer Graphics (Proc. SIGGRAPH), Vol.
19, No. 3. July 1985, pp. 23-30.

David W. George is a graduate student in the
Program of Computer Graphics at Cornell Uni-
versity. His research interests include realistic
image synthesis and parallel programming.
George received a BS in math and computer
science from Cornell University and expects
his MS in computer graphics in August 1990.

Frangois X. Sillion is a post-doctoral associate
in the Program of Computer Graphics at Cor-
nell University. His research interests include
light-reflection modeling. global-illumination
algorithms, interaction, and evaluation of
image quality.

As a student of the Ecole Normale Superieure
in Paris, Sillion received an undergraduate ed-
ucation in math and physics, a graduate degree
in Solid State Physics in 1986, and a PhD in
computer science in 1989.

Donald P. Greenberg is director of the Program
* of Computer Graphics and the originator and
. former director of the Computer Aided Design
- Instructional Facility at Cornell University.
i During the last 15 years he has been primarily
concerned with research advancing the state of
- the art in computer graphics and the use of

these techniques as they may be applied to a

variety of disciplines. His specialties include

hidden-surface algorithms, geometric model-
ing, color science, and realistic image generation.

In 1987 Greenberg received the ACM SIGGRAPH Steven A. Coons
Award, and in 1989 he received the NCGA Academic Award. He
is on the editorial boards of Computers and Graphics and Com-
puter-Aided Design, and he is a member of ACM SIGGRAPH and
IEEE.

Greenberg received his PhD from Cornell in 1968.

The authors can be contacted at the Program of Computer Graph-
ics, 120 Rand Hall, Cornell Univ., Ithaca, NY 14853.

IEEE Computer Graphics & Applications

