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Creating realistic images has been a major focus in the study of computer graphics

for much of its history. This e�ort has led to mathematical models and algorithms that

can compute predictive, or physically realistic, images from known camera positions and

scene descriptions that include the geometry of objects, the re
ectance of surfaces, and

the lighting used to illuminate the scene. These images accurately describe the physical

quantities that would be measured from a real scene. Because these algorithms can predict

real images, they can also be used in inverse problems to work backward from photographs

to attributes of the scene.

Work on three such inverse rendering problems is described. The �rst, inverse lighting,

assumes knowledge of geometry, re
ectance, and the recorded photograph and solves for

the lighting in the scene. A technique using a linear least-squares system is proposed and

demonstrated. Also demonstrated is an application of inverse lighting, called re-lighting,

which modi�es lighting in photographs.

The second two inverse rendering problems solve for unknown re
ectance, given images

with known geometry, lighting, and camera positions. Photographic texture measurement

concentrates on capturing the spatial variation in an object's re
ectance. The resulting

system begins with scanned 3D models of real objects and uses photographs to construct

accurate, high-resolution textures suitable for physically realistic rendering. The system is

demonstrated on two complex natural objects with detailed surface textures.

Image-based BRDF measurement takes the opposite approach to re
ectance measure-

ment, capturing the directional characteristics of a surface's re
ectance by measuring the

bidirectional re
ectance distribution function, or BRDF. Using photographs of an object

with spatially uniform re
ectance, the BRDFs of paints and papers are measured with

completeness and accuracy that rival that of measurements obtained using specialized de-

vices. The image-based approach and novel light source positioning technique require only



general-purpose equipment, so the cost of the apparatus is low compared to conventional

approaches. In addition, very densely sampled data can be measured very quickly, when

the wavelength spectrum of the BRDF does not need to be measured in detail.
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Chapter 1

Introduction

For much of its history, creating realistic images has been a major focus in the study

of computer graphics. This e�ort was originally motivated by a desire for photorealistic

images, which reproduce all aspects of an image necessary to make it indistinguishable

from a photograph. More recently, many researchers have pursued the stronger goal of

predictive, or physically realistic, images, which accurately describe the physical quantities

that would be measured from a real scene. Signi�cant progress has been made toward the

goal of physical accuracy: today we have well-grounded mathematical descriptions of light

re
ection and light transport, and many algorithms are capable of rendering physically

accurate images for a variety of scenes.

All realistic rendering is based, one way or another, on the rendering equation:

f = K(h+Gf): (1.1)

This equation, which follows Arvo's formulation [6], is derived in Chapter 2. It relates the

rendered image to the characteristics of the scene being rendered as follows:

fz }| {
Light

re
ected
from

surfaces

= Kz }| {
How surfaces
re
ect light

( hz }| {
Direct

illumination
from light
sources

+ Gz }| {
How light
travels
among
surfaces

fz }| {
Light re
ected
from surfaces

| {z }
Indirect illumination

)

� The function f describes the light re
ected from the surfaces in the scene, including

light leaving every part of the surface in every direction.

� The operator K represents the re
ectance of the surface, describing how it varies with

surface position and with the directions of illumination and re
ection.
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� The operator G describes how light travels from one surface point to another, and

depends solely on the geometry of the surfaces.

� The function h describes the incident light at each surface point due to direct illumi-

nation.

When a camera takes a photograph of a scene, the image measures light re
ected from

visible surfaces toward the camera|this is part of f . For this reason, a renderer must solve

Equation 1.1 for f , given known values for the three other quantities. However, it is also

possible, given knowledge of f , to pose inverse rendering problems in which one of the other

quantities becomes the unknown. For input to these problems, we can use the information

about f that we obtain from photographs taken of real objects. Because the mathematical

models and algorithms we use for rendering are physically accurate, we can use the existing

set of techniques that have been developed for rendering as we design algorithms to solve

inverse rendering problems.

If h is unknown and K, G, and part of f are known, we have the problem of inverse

lighting: given a photograph (part of f) and a complete model of the scene (K and G),

deduce what lighting (h) illuminated the scene. This problem is discussed in Chapter 3, and

a solution technique is presented. We also demonstrate an application of inverse lighting to

modifying lighting in photographs.

If K is unknown and G, h, and part of f are known, we can solve for some informa-

tion about K. This problem, image-based re
ectometry, is the topic of Chapters 4 and 5.

Because K includes information about both spatial and directional variation in re
ectance,

it is potentially a very complicated function, and we will use a number of photographs,

rather than just one, to record enough information. Even so, we must make simplifying

assumptions in order to have tractable problems. In Chapter 4, we put constraints on the

directional variation so that we can capture the spatial variation in detail|this is photo-

graphic texture measurement. In Chapter 5 we assume spatial uniformity so that we can

capture the directional variation in detail|this is image-based BRDF measurement.

If G is unknown, we have the problem of shape from shading, which is a long-studied

problem in the �eld of computer vision. We do not address shape from shading in this

dissertation.

In addition to the three chapters of core material just mentioned, Chapter 2 covers some

background ideas that are common to all the later chapters, and the Appendices describe

some apparatus and methods that were important in the implementation of the techniques

described in the chapters.



Chapter 2

Background

The techniques presented in the later chapters share a common theme of using computations

from rendering. Radiometry provides the mathematical language of rendering; in particular,

describing surface re
ectance is an important topic with many subtleties. Using these

ideas, we can formulate the rendering equation, which ultimately underlies all rendering

and inverse rendering.

2.1 Mathematical Preliminaries

When we write integrals, we will use the notation common in measure theory [27], in which

a function f is integrated over a domain A with respect to a measure �. The resulting

integral will be written Z
A

f d� or

Z
A

f(x) d�(x): (2.1)

The latter form is used whenever it is important to name the integration variable. The

measure serves to de�ne the notion of size for subsets of the domain: for example, volume

is a measure on 3-space, and surface area is a measure on the unit sphere.

The sphere, denoted S2, will often represent the set of all directions in 3-space. When we

are discussing the directions from a point on a surface, we will often separate the directions

pointing inward from those pointing outward, splitting the sphere of directions into two

hemispheres. The outward-facing hemisphere at a surface point x will be denoted 
x.

Formally,


x = f! 2 S2 j hn(x); !i > 0g; (2.2)

where n(x) is the surface normal at x. The inward-facing hemisphere is simply �
x. When

it is not necessary to make the dependence of 
x on x explicit, the x will be omitted. We

3
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x

y

z

!

�

�

Figure 2.1: Coordinate system for directions at a surface.

will use unit vectors or spherical coordinates for elements of S2 or 
 as needed, using the

coordinate system shown in Figure 2.1.

Two measures on the hemisphere will be used: � is the Lebesgue measure, which corre-

sponds to the natural idea of spherical surface area, or solid angle; and � is the projected

solid angle measure. If A is a measurable subset of 
, �(A) is the surface area of A (or

equivalently the solid angle subtended by A) and �(A) is the area of A projected onto the

plane of the surface (Figure 2.2). The measures � and � are related by:Z
A

f d� =

Z
A

f(!) h!;ni d�(!); (2.3)

so � is sometimes called the cosine-weighted solid angle measure.

A few notational conventions that may be unfamiliar can be de�ned by example:

� The symbol x normally represents a vector, and its components are x1; : : : ; xn.

� If f(x; y) = xy is a function of two real variables, we can de�ne f by writing:

f : IR2 ! IR

: (x; y) 7! xy:

� If f : IR2 ! IR, then

f(x; �) : IR! IR

: y 7! f(x; y):
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� If � is an equivalence relation on the set U , then U = � is the quotient of U by �,
which is the set of all equivalence classes of �. It can be thought of as a set obtained

by identifying any pair of equivalent points to be the same point. For example, if

we take U to be the unit square in IR2 and de�ne x � y () x1 = y1, then the

equivalence classes of � are all the vertical segments through the square, and U = �
amounts to a single horizontal segment. If U has a topological structure, then it

induces a quotient topology on U = � [43].

2.2 Radiometry

Rendering and inverse rendering are concerned with the propagation of light, which is

described by the science of radiometry. We will formulate radiometry along much the same

lines as Arvo [6].

We start with two assumptions: that light can be completely described by geometric

optics and that all light is unpolarized. The former assumption leads to two properties

that we will use extensively: light travels only along straight lines, and the e�ects of light

sources are linear. In this case, linear means that if two sources of light A and B are used

to illuminate some optical system, then the output from that system due to A + B is the

sum of the outputs due to A and B individually.

The most fundamental radiometric quantity is radiance, which completely describes the


ow of light through space. The radiance function L : IR3 � S2 ! IR is de�ned for all

directions at all points in space. L(x; !) measures the 
ow dP of light energy that would

cross a small surface dx located at x facing the direction !, counting only light traveling in

a small range of directions d! around ! (Figure 2.3), in proportion to the area of dx and

the solid angle of d!:

dP = L(x; !) dx d!; (2.4)

or,

L(x; !) =
@P

@x @!
: (2.5)

The units of radiance are watts per square meter per steradian. It is important to note

that radiance describes the 
ow through a surface when the surface is perpendicular to the

direction of propagation. The 
ow per unit area and solid angle through a surface oriented

with a surface normal n is

@P

@x @!
= L(x; !) hn; !i : (2.6)
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�(A)

�(A)

Figure 2.2: The solid angle measure � and the projected solid angle measure �.

x

dx

!

d!

Figure 2.3: Measuring radiance for a surface element dx and a solid angle
element d!. Only light that 
ows through dx, the left face of the illustrated
solid, traveling in directions within the cone d!, is included.
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At a surface it is often convenient to separate the function L(x; �) into two functions

Li(x; �) and Le(x; �) : 
 ! IR. The function Li(x; �) represents only radiance traveling

toward the surface, and Le(x; �) measures only radiance traveling away from the surface:

Li(x; !) = L(x;�!); Le(x; !) = L(x; !): (2.7)

Again, where the dependence on x need not be mentioned, the x will be omitted.

Several other radiometric quantities may be derived by integrating radiance. Irradiance

is a measure of total power falling on a surface per unit area: E(x) = dP=dx. This total

can be found by integrating Equation 2.6 with respect to solid angle:

E(x) =

Z


Li(x; !) hn; !i d�(!): (2.8)

Using Equation 2.3, we can simplify this to

E(x) =

Z


Li(x; �) d�: (2.9)

In this way, we measure incident directions so as to account for the foreshortening of the

surface area, avoiding the need for extra factors of hn; !i that would otherwise appear in

every equation.

The analog of irradiance for exitant radiance is radiant exitance, a measure of the total

power leaving a surface per unit area:

R(x) =

Z


Le(x; �) d�: (2.10)

Both irradiance and radiant exitance have units of watts per square meter.

All these radiometric quantities depend on the wavelength of light. Radiance exists

independently at every wavelength, and its complete description is a function of one more

dimension:

L : �� IR3 � S2 ! IR; (2.11)

L(�;x; !) =
@P

@� @x @!
: (2.12)

In this case L is called spectral radiance and has units of watts per square meter per stera-

dian per nanometer. Wavelength dependence is important in computer graphics because

variations in L with � give rise to the sensation of color. The dependence of radiomet-

ric quantities on wavelength will be left implicit through most of this dissertation, since

it rarely impacts the algorithms being developed. Where it is necessary, we will incorpo-

rate the wavelength dependence by measuring total radiance in each of several wavelength

bands. Transforming such measurements into estimates of spectra or into colors that can

be reproduced on a monitor or other output device is a challenging problem that we do not

address.
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2.3 The Bidirectional Re
ectance Distribution

Function

When the 
ow of light is interrupted by an opaque surface, the energy is partly absorbed

by the material and partly scattered back toward the rest of the environment. The amount

of scattered light and its directional distribution depend on the composition and structure

of the surface.

2.3.1 De�nition and basic properties

The easiest way to characterize how a surface scatters light is to describe how light arriving

at a point from an in�nitesimal solid angle is scattered into all directions. Once we have

that information, we can integrate with respect to incoming solid angle to discover how

light will scatter from any incident distribution.

The bidirectional re
ectance distribution function [45], universally abbreviated BRDF,

describes surface re
ection according to this approach. For any incident direction !i and

any exitant direction !e, the BRDF value fr(!i; !e) gives the ratio of radiance observed in

the direction !e to irradiance from an in�nitesimal solid angle about !i. In other words, it

describes the result of the following experiment: expose the surface to a uniform radiance

of Li coming from a small solid angle 
i containing !i. Measure the radiance Le re
ected

from the surface in the direction !e for various sizes of 
i. The ratio Le=Li will be directly

proportional to �(
i),
1 and the constant of proportionality is the BRDF, fr(!i; !e), which

therefore has units of inverse solid angle. Knowing the exitant radiance per unit incident

radiance per unit solid angle for any incident direction, we can integrate with respect to

solid angle to �nd the exitant radiance due to an entire incident radiance distribution:

Le(!e) =

Z


fr(!i; !e)Li(!i) d�(!i): (2.13)

A BRDF is then a function fr : 
 � 
 ! IR; it is a real-valued function on a four-

dimensional domain. Another way to describe a surface's directional re
ectance behavior

is with a linear operator Fr that maps a real-valued function on 
 (the incident radiance

distribution) to another real-valued function on 
 (the re
ected radiance distribution). The

action of Fr is de�ned by Equation 2.13, so that Le = FrLi.

All BRDFs share two properties that are required by physical law. First, the BRDF of

any surface is always symmetric with respect to exchanging its arguments:

fr(!; �) = fr(�; !): (2.14)

1This is exactly true only in the limit as �(
i)! 0.
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This property is called reciprocity, and it has the e�ect of reducing the domain of fr by

a factor of two. If we de�ne the equivalence relation �r such that (!; �) �r (�; !) for all

directions ! and �, then reciprocity means that two con�gurations that are equivalent under

�r map to the same value under fr. By requiring fr to agree on equivalent con�gurations,

we have in e�ect de�ned BRDFs to be functions on (
�
) = �r. Although this domain is

in some sense smaller than 
� 
, it continues to be a four-dimensional set.

For the linear operator formulation of the BRDF, reciprocity simply requires Fr to be

self-adjoint.

All BRDFs also have the property that the re
ected radiant exitance is never greater

than the incident irradiance:Z



Z


fr(!i; !e)Li(!i) d�(!i)d�(!e) <

Z


Li(!) d�(!) for all Li: (2.15)

Since this bound must hold for any incident distribution Li, it must hold for a distribu-

tion with all its energy in an in�nitesimal solid angle around any particular direction !i, so

that Z


fr(!i; !e) d�(!e) < 1 for all !i: (2.16)

Conversely, if we assume Equation 2.16, then integrating both sides against Li over


 leads to Equation 2.15, so the two equations are equivalent. We will therefore use the

simpler Equation 2.16 as the de�nition of the property of energy conservation.

For the linear operator Fr, energy conservation means that the 1-norm of Fr is less than

1.

Another BRDF property, one shared by many materials, is isotropy. An isotropic surface

is one that has no \grain" or distinguished direction to its material. Such a surface has a

BRDF that is invariant under rotating the surface in its plane. That is,

fr(!i; !e) = fr(R!i; R!e); (2.17)

where R is any rotation about the surface normal (Figure 2.4). This de�nes an equivalence

relation on 
�
 under which (!; �) �i (R!;R�) for all directions ! and � and all rotations

R about the surface normal. The equivalence classes of this relation are one-dimensional

subsets of 
�
: each consists of all the con�gurations that can be obtained by rotating a

single con�guration around the surface normal. The e�ective domain of an isotropic BRDF

is then (
 � 
) = �i, which is a three-dimensional set. Combining this domain reduction

with the reduction due to reciprocity leads to a further reduced but still three-dimensional

domain, (
� 
) =(�r [ �i).
2

2Two con�gurations are equivalent under �r [ �i if they are equivalent under either �r or �i.
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R!

!

R�

�

n

Figure 2.4: Rotating a con�guration about the surface normal. For an
isotropic BRDF, fr(!; �) = fr(R!;R�).

A reasonable extension to the concept of isotropy is bilateral symmetry: the exitant

distribution for any particular incident direction should be symmetric across the plane of

incidence. This symmetry does not follow from reciprocity and isotropy, but it is intuitively

reasonable that a surface without any directionally aligned behavior will also fail to distin-

guish between scattering to the left and to the right. If this symmetry is assumed, it leads

to another halving of the domain of the BRDF.

2.3.2 Common re
ectance phenomena

The previous section outlined the fundamental properties of the BRDF, but the BRDFs

of most materials have many other characteristics in common. There are a few modes

of re
ection that account for the most commonly observed features of measured BRDFs.

These behaviors are related to the �ne geometric structure of the surface.

Specular re
ection occurs only for smooth surfaces. In this mode of re
ection, light

coming from one direction is re
ected into a single outgoing direction. The incident distri-

bution of radiance is exactly duplicated, though attenuated, in the exitant distribution, but

re
ected through the normal. Information about the incident light distribution is not lost,

and an optical image of the source is formed. Examples of surfaces that exhibit exclusively

specular re
ection are a front-silvered mirror, which re
ects nearly all the incident light,

and a smooth piece of glass, which re
ects a small portion of the incident light, transmitting

the rest.
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In di�use re
ection, incoming light from a single direction is scattered into a range of

directions. The distribution of re
ected light from a narrow incident beam di�ers in shape

depending on the characteristics of the surface. In the purest form of di�use re
ection,

the radiance distribution approaches uniform, in the limit becoming an ideal di�use, or

Lambertian, re
ector; such a surface has a constant function for its BRDF.

Di�use re
ection that is not Lambertian is called directional di�use [30]. Directional

di�use re
ectance distributions for a particular incident direction typically have a peak

near the specular direction, with radiance falling o� away from that peak. As the an-

gle between the incident direction and the surface normal increases, the re
ectance peak

exhibits two changes: it increases in magnitude, and the direction at which maximum

re
ectance is achieved moves away from the specular direction|the peak becomes increas-

ingly o�-specular. These two phenomena are often considered to be separate, but they are

in fact two aspects of the same phenomenon. This can be seen by examining a graph of

the incidence-plane values of an isotropic directional di�use BRDF as a function of the

incidence and exitance angles.

Figure 2.5 (a) shows such a plot for a simple isotropic BRDF model. The con�gurations

where specular re
ection would occur are along the diagonal of the graph, where �i = �e,

and the graph is symmetric across that diagonal (because of reciprocity and isotropy)3. The

directional peak of the BRDF is a ridge along this line, and because the re
ectance increases

with increasing incidence angle, the ridge gets higher as j�ij and j�ej increase (towards the
back in the �gure). The line on the surface where �i = �e is drawn with a thin black line.

When we draw the exitant distribution for a particular angle of incidence, we are taking

a slice of the surface in Figure 2.5 (a). One such slice, for an incident angle around 65�, is

drawn with a bold black line, and it is repeated in part (b) as a standard plot of fr versus

�e. At the specular angle (the intersection of the black curves), the �xed-incidence curve

cuts obliquely across the upward-sloping ridge, and is therefore sloping upwards.4

Therefore, we can conclude that the peak of a �xed-incidence re
ectance distribution

cannot be in the specular direction if the magnitude of the peak increases with angle. O�-

specular re
ection is a direct consequence of increasing re
ectance toward grazing angles,

and it is really an artifact of how we slice the BRDF when we graph �xed-incidence dis-

tributions. If the peak in the directional di�use re
ection is considered as a characteristic

of the whole BRDF, rather than as a characteristic of the slices of the BRDF, then it is

centered on the specular diagonal, as can be seen from Figure 2.5, and is not o�-specular

3To be precise, �i = ��e, but for simplicity in this section both angles are positive.
4A brief proof: the directional derivative across the ridge, perpendicular to the line of symmetry,

is zero, and if the directional derivative along the �xed-incidence slice was also zero (as it would be
if the peak of the �xed-incidence distribution was at the specular angle) the entire derivative would
be zero, contradicting the fact that the ridge is sloping upwards.
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Figure 2.5: The relationship between o�-specular re
ection and increasing specularity. (a)
The BRDF in the incidence plane plotted as a function of incidence and exitance angle.
The two curves drawn in black are the ridge line (light), where �i = �e, and a slice for
�xed incidence angle (bold). (b) The same slice plotted as a function of incidence angle
alone. Note that in both graphs the bold curve is still increasing where the two curves cross
(arrow).
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at all.

An additional re
ectance phenomenon that often occurs in conjunction with di�use

re
ection is known as retrore
ection (sometimes called the hot spot e�ect [3]). In this mode

of re
ection, which is common among rough and porous surfaces like cloth, stone, and


at paints, the scattered light distribution shows a peak pointing back in the direction of

the source. The most dramatic examples of retrore
ection come from materials designed

for use in tra�c signs and other objects that must be visible to drivers of automobiles at

night. When they are illuminated by a light source (the car's headlights) positioned near

the viewer, they return a large fraction of the incident light back toward the viewer, making

them appear many times brighter than other surfaces. Most examples of such extreme

retrore
ection are man-made surfaces, but the same phenomenon occurs to a lesser extent

in a great variety of materials.

All measurements of BRDFs must be made over some surface area at least large enough

to enable the assumptions of geometric optics. How large an area is used a�ects which

of these types of re
ection will be observed, because the scale of measurement determines

which surface features are treated as microstructure to be rolled into the BRDF and which

are treated as part of the geometry of the surface on which the BRDF is being measured.

For example, suppose we are measuring an irregular stone surface that has been painted

with a glossy paint. If we measure one square millimeter of the surface, we will conclude that

we have a specular surface, since the paint will have �lled in all the surface imperfections to

produce a locally smooth surface. However, if we measure a square meter, we will �nd that

light is scattered in many directions from the di�erently oriented parts of the surface, leading

to a directional di�use re
ectance distribution. When measuring real surfaces, particularly

those (such as the objects measured in Chapter 4) that have complex shapes, it is always

important to make sure that surface detail that is not represented by the geometric model

is properly accounted for in the BRDF but that geometry that is modeled is not included

in the BRDF.

2.4 Rendering

One reason for studying radiometry and BRDFs is to simulate the re
ection of light in

order to produce realistic synthetic images of modeled scenes. This problem has been

studied extensively, and many techniques for solving it have been described. Many of the

computations involved in those algorithms are the same ones that will be required to solve

the inverse problems discussed in this dissertation.

The BRDF describes how light re
ects at a single surface point in isolation. Describing

how light moves around an entire environment requires connecting the surface BRDFs with
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a description of how light gets from surface to surface. The equation that does this is called

the rendering equation, and we develop it here using a formulation similar to Arvo's [6].

We will consider the environment to consist of various light-re
ecting surfaces illumi-

nated by light that originates outside the convex hull of all surfaces; we refer to illumination

as coming from the background. This background, along with the assumption that surfaces

do not emit light, is a departure from the common practice in the rendering literature, but

in the subsequent chapters it will prove more convenient than the usual formulation.

LetM be a piecewise-smooth 2-manifold embedded in IR3, which describes the shape of

all the surfaces in the environment. We extend the function fr with an additional parameter

that makes the dependence on surface position explicit:

fr :M� 
�
! IR: (2.18)

Lastly, we de�ne a function L0
i :M� 
! IR that gives the incident radiance due directly

to illumination from the background in every direction at every surface point.

We de�ne two linear operators on the space of real-valued functions on M� 
 that

encapsulate how light behaves. First, we encapsulate fr in the re
ection operator K:

(KLi)(x; !e) =

Z


fr(x; !i; !e)Li(x; !i) d�(!i): (2.19)

K transforms an incident light distribution into the exitant light distribution that results

by re
ection. Second, we de�ne the transport operator G:

(GLe)(x; !i) =

8<
:Le(y;�!i) if y is visible from x in the direction !;

0 if no surface is visible:
(2.20)

G transforms an exitant light distribution into the incident light distribution that results

from surfaces illuminating one another.

These two operators lead to a compact form of the rendering equation. The inputs to

the rendering process are the geometry, which makes G known; the BRDFs, which make

K known; and the lighting, which makes L0
i known. K lets us write Le, for which we must

solve, in terms of Li:

Le = KLi: (2.21)

In turn, Li is the sum of direct illumination, L0
i , and illumination by light exiting other

surface points, GLe. Thus,

Le = K(L0
i +GLe): (2.22)

This equation has a single unknown, Le, and it is an operator equation of the second kind [6].

Methods for solving this equation, the rendering equation, have been studied extensively,
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and many e�ective algorithms have been found. The method we used to render images in

this dissertation, both inside algorithms and for presentation, is Monte Carlo path tracing

[35, 5, 56, 24].

The only di�erence between Equation 2.22 and the rendering equation presented by

Arvo is how light gets into the system. He uses a surface emission function L0
e and writes

Le = KGLe +L0
e. In our introduction, we wrote f for Le and h for L0

i in order to be more

consistent with his notation.
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Chapter 3

Inverse Lighting

For as long as photographs have existed, photographers have sought ways to improve their

images after they have been taken. Professional photographers have perfected the analog

techniques for developing and printing �lm with a variety of e�ects, such as enhancing

contrast or raising or lowering the luminance of the entire scene. They commonly manip-

ulate individual parts of a photograph, removing shadows, highlighting features, softening

backgrounds, and sharpening detail by optically focusing portions of the image in di�erent

ways or exposing regions of the picture in di�erent amounts. These time-consuming manual

operations, which yield impressive photographic results, require great artistic and technical

skill.

Many of these same operations are now standardly performed on digital images us-

ing digital �lters that are convolved with the array of intensity values. Filters have been

designed for blurring, sharpening, edge detection, contrast enhancement, and many other

operations. Formerly used only in the scienti�c image processing domain, these operations

are now widely available through commercial software programs, such as Adobe Photo-

shop [1]. These easy-to-use programs all assume a two-dimensional array of input values

and provide two-dimensional operations that result in two-dimensional output arrays. Al-

though results can be impressive, some tasks, such as removing shadows, changing lighting

conditions, or modifying the shading on continuous surfaces, are di�cult to achieve.

With the advent of digital photography, it has become possible for cameras to record

with each photograph information external to the actual image. For instance, many digital

cameras record the lens settings, exposure parameters, distance to subject, and other data

available from the computer that controls the camera's operation. In the future, more

sophisticated cameras will gather more complex information about the scene. What if

this included geometry? What additional operations would be possible that are impossible

without such information?

This question leads us to the �rst inverse rendering problem we will consider. As we

17
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pointed out in the introduction, having a photograph and a description of the subject's

geometry and re
ectance allows us to pose the inverse lighting problem, which asks for a

description of the sources of light that illuminated the object when the photograph was

taken. In this chapter, we will pose this problem more precisely, then proceed to solve it

using methods for linear inverse systems. We will also demonstrate an application of the

resulting data, which will allow us to manipulate the lighting in the photograph.

3.1 Problem Statement

Inverse lighting is an inverse rendering problem in the most literal sense. We are given a

description of a scene and of a camera viewing that scene|that is, all the usual inputs to a

renderer other than the lighting. We are also given a photograph of the described scene taken

by the described camera|that is, the usual output of a renderer. Our task is to determine

the lighting that was used to take the photograph, or, more literally, what lighting could

be provided as input to a renderer to cause an output similar to the photograph.

For this problem statement to be precise, we must de�ne exactly what we mean by asking

what the \lighting" is in the photograph. In general, light could originate anywhere, even

directly from the surfaces of the objects pictured in the photograph. With this possibility,

it is impossible to distinguish an object that glows from one that is re
ecting light, but

excluding self-emissive objects will not signi�cantly harm the practical applicability of our

algorithm. However, even if light is assumed to come from out of view, a four-parameter

function is still required to completely describe the incoming radiance �eld, since a di�erent

radiance could conceivably arrive from every line entering the scene [39]. We cannot recover

that function from a single two-parameter image.

We chose to reduce the dimension of the lighting solution by assuming that all light

comes from sources that are far away compared to the size of the objects we are looking

at. This means that the incident radiance distribution is the same1 at every point on

the object's surface. We can think of this radiance as coming from the inside of a very

large sphere surrounding the scene. Thus a light distribution is a two-parameter function

Lb : S2 ! IR. In essence, we are solving for the function L0
i of Section 2.4 under the

assumption that it does not vary with position on the surface.

3.2 Prior Work

Solving for lighting in an inverse system is not new to computer graphics, although it may

be new to photography. Schoeneman et al. introduced \painting with light," [55] in which a

1In a �xed frame of reference, rather than with respect to the local surface normal.
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designer could specify the desired illumination at particular locations in a scene. Intensities

of a �xed set of lights were adjusted by a linear least-squares procedure to approximate the

desired result. Kawai et al. described the process of \radioptimization," [37] which uses a

nonlinear minimization procedure with a more complex objective function to meet various

design goals by adjusting light source directions and intensities.

In this chapter, we apply the idea of inverse lighting using a measured photograph,

rather than a user-speci�ed goal, and using a generic set of basis lights. This leads to a

system that infers the lighting that actually existed at the time the photograph was taken,

rather than solving for a lighting setup that achieves a desired e�ect. The system that

results from using a generic set of lights to illuminate an object is more ill-conditioned than

the system that results from lighting an environment with a set of fairly focused lights,

requiring the use of a regularized least-squares procedure.

Others have taken advantage of the linearity of rendering in other ways. Nimero� et al.

rendered basis images illuminated by a set of steerable basis functions and used linear

combinations to approximate the e�ects of skylight at di�erent times of day [46]. Steerable

basis functions were also used to allow e�cient re-rendering under altered lighting in Teo

et al.'s work on interactive lighting design [57]. Further examples include Dorsey et al.'s

work on simulation for lighting design in opera [17] and Airey et al.'s work on real time

building walkthroughs [4].

3.3 Basic Least-squares Solution

As explained in Section 2.4, the rendering problem for a particular scene de�nes a linear

function from the background radiance distribution Lb, which we call lighting here, to the

radiance re
ected from the surface, Le. This property corresponds to the familiar notion of

superposition of light: if you light an object with two sources together, the resulting image

will be the sum of the images that would result from each source separately. The linearity

of rendering with respect to lighting has great signi�cance, because it means that the large

body of robust, e�cient computational tools that exists for linear problems may be brought

to bear on inverse lighting.

We can encapsulate the action of the rendering process on a lighting con�guration in a

single linear operator R, which maps lighting con�gurations to re
ected radiance distribu-

tions:

R : (S2 ! IR)! (M� 
! IR): (3.1)

In this formulation, the information about the scene, both geometry and re
ectance, is

folded into R.
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In order to work withR in computation, we must represent its input, Lb, and its output,

Le, numerically. The information that we have about Le is already in usable form: each

pixel of the image is a linear measurement of re
ected radiance over a small area of surface

and a small cone of directions. Let Kj : (M� 
! IR) ! IR be the linear functional that

gives the value of pixel j in terms of Le. To represent a lighting con�guration numerically,

we approximate it by a linear combination of a set of basis functions L1
b ; : : : ; L

n
b . A lighting

con�guration is then speci�ed by a set of coe�cients x1; : : : ; xn, and the corresponding light

distribution is Lb =
Pn

i=1 xiL
i
b.

Let b1; : : : ; bm be the values of the pixels in the photograph. Using the notation we just

developed, we can write down the relationship between bj and Lb:

bj = KjRLb: (3.2)

Substituting the representation of Lb in our light basis, we have

bj = KjR

 
nX
i=1

xiL
i
b

!
=

nX
i=1

xiKjRL
i
b: (3.3)

Since KjRL
i
b is a scalar, this equation is a matrix system:2

664
...

bj
...

3
775 =

2
664

...

� � � KjRL
i
b � � �

...

3
775
2
664
...

xi
...

3
775 : (3.4)

If we let A represent the matrix, we have a compact description for our discrete approxi-

mation of the rendering process:

b = Ax: (3.5)

The matrix A is m by n, where m is the number of pixels and n is the number of light

basis functions. Note that column i of A simply contains the pixel values of an image of the

object lit by the ith basis function; we call this image the ith basis image. This restating of

the rendering process in terms of a light basis succinctly describes the image that will result

from any light distribution described in terms of the basis: it is a weighted sum of the basis

images, with the weight of each basis function becoming the weight of its corresponding

basis image. It also provides a statement of the inverse lighting problem, if we make b the

known value and x the unknown.

Since there are always more pixels in the image than there are light basis functions,

m > n and this system is overdetermined, and we may be unable to achieve equality, no

matter what value we assign to x. We must relax our goal to �nding a value for x that

brings Ax close to b. Thus, solving inverse lighting amounts to �nding a linear combination
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of the n basis images that closely resembles the photograph; the coe�cients of this linear

combination are then the coe�cients of the light basis functions in the solution. Finding

the least-squares solution, the value for x that brings Ax closest to b in the 2-norm, is a

standard problem of numerical linear algebra that can be solved in time O(n2m) via any

one of a number of methods [38, 49, 25].

The process of inverse lighting is summarized in Figure 3.1. First, the renderer is given

the camera, the 3D model, and each of the basis lights, and it produces a set of basis

images. The least-squares solution method then determines a linear combination of these

basis images that matches the photograph. The coe�cients in this linear combination are

the lighting solution.

In order to use this technique, we must de�ne the light basis functions L1
b ; : : : ; L

n
b . We

chose to use a piecewise constant basis. We divided the sphere into a number of triangular

regions and de�ned one basis function for each region. Each basis function is equal to one

inside its corresponding region, called its region of support, and zero outside. The regions

were de�ned as follows: start with the sphere divided along the coordinate planes into eight

spherical triangles, then recursively subdivide each triangle into four smaller triangles to

obtain bases of 32, 128, or 512 elements. Figure 3.2 illustrates the 32-element basis obtained

by this process.

3.4 Regularized Solution

Particularly when the surface's BRDF is very smooth, for instance when a Lambertian

BRDF is used, the matrix A is ill-conditioned. This means that A is nearly singular, so

that some signi�cant changes to x have little e�ect on Ax. In this situation, many values

of x that are far from the correct x will bring Ax nearly as close to b as the correct answer

does. With the introduction of noise and modeling errors, the least-squares value of x may

no longer be anywhere near the answer we seek. The least-squares solution, while it does

illuminate the object so as to create an image that closely approximates the photograph,

is not reasonable as an estimate of the lighting in the actual scene. Even if the model

and renderer were a perfect simulation of reality, so that the correct solution would exactly

match the photograph, the ill-conditioning introduces enough sensitivity to noise that the

noise inherent in capturing the photograph will lead the lighting solution to become wildly

varying and implausible. In practice, the photograph will be somewhat di�erent even from

an image rendered using exactly the right lighting; this further compounds the problem.

In order to obtain solutions that are more plausible as real lighting con�gurations, we

adopt a widely used technique known as regularization. We introduce a term B(x) into the
quantity to be minimized that measures departure from \plausibility." Rather rather than
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Figure 3.1: The data 
ow in the inverse lighting algorithm.
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Figure 3.2: A 32-light basis set, drawn on the directional sphere.

minimizing kAx� bk2, we minimize kAx� bk2 + �2B(x). If B is expressible as the squared

norm of a linear function B of x, it can be combined with A to get a new linear system:"
A

�B

#
x�

"
b

0

#
: (3.6)

This is called �rst-order linear regularization. The parameter � mediates the tradeo� be-

tween how well Ax approximates b and how reasonable x is. In the absence of precise

information about the errors in A and b, � must be chosen by hand: this is the approach

we take.

The choice of B of course a�ects the regularized solution. Since we are trying to eliminate

unwarranted local variations in Lb, we chose to make B an approximation to the norm of

the �rst derivative of Lb. This means that our task is to �nd a slowly varying radiance

distribution that produces an image similar to the photograph. In our piecewise constant

basis, this translates to penalizing di�erences in the coe�cients of basis functions with

adjacent regions of support. Thus, for every pair (Li
b; L

j
b) of basis functions that are adjacent

on the sphere, we add the square of the di�erence in their coe�cients to B:

B(x) =
X

Li
b
;L

j
b
adjacent

(xi � xj)2: (3.7)

This de�nition leads to a matrix B that has a row for every pair of adjacent basis functions.

Each row consists of all zeroes except for a one in the column of the �rst basis function in

the pair and a negative one in the column of the second. Then kBxk2 = B(x).
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3.4.1 Accelerating using the GSVD

We can easily compute x by forming the matrix in Equation 3.6 and using the same least-

squares algorithm as in Section 3.3. However, this requires repeating the entire calculation

for each new �, which precludes interactive adjustment of �. Instead, we use a method

involving the generalized SVD (GSVD) that allows � to be adjusted with just the cost of

an n by n matrix-vector multiplication for each change in �.

The GSVD [25] takes two matrices A 2 IRm1�n and B 2 IRm2�n and produces orthog-

onal matrices U1 2 IRm1�m1 and U2 2 IRm2�m2 , an invertible matrix X 2 IRn�n, and two

diagonal matrices C 2 IRm1�n and S 2 IRm2�n such that

UT
1 AX = C

UT
2 BX = S:

(3.8)

The advantage of factoring A and B with orthogonal factors on the left and a common

factor on the right becomes apparent when we look at the normal equations for (3.6):

(ATA+ �2BTB)x = AT b: (3.9)

When we substitute the factored A and B, we obtain

(X�TCTUT
1 U1CX

�1 + �2X�TSTUT
2 U2SX

�1)x = X�TCTUT
1 b: (3.10)

Since U1 and U2 are orthogonal, UT
1 U1 = I and UT

2 U2 = I. Canceling those and noting

that CT = C and ST = S we have:

(X�TC2X�1 + �2X�TS2X�1)x = X�TCUT
1 b

X�T (C2 + �2S2)X�1x = X�TCUT
1 b

(C2 + �2S2)X�1x = CUT
1 b

x = X(C2 + �2S2)�1CUT
1 b:

We have now factored the computation of x into two parts, an expensive part CUT
1 b that

does not depend on � and an inexpensive part X(C2+�2S2)�1 that does. If we pre-compute

the GSVD and the vector y = CUT
1 b, we can get a new x from a new � by computing

(C2 + �2S2)�1y (an O(n) operation, since C and S are diagonal) and multiplying by X (an

O(n2) operation). The computation of the GSVD, if we compute only the �rst n columns

of U1 and U2, is O(n
2m), the same order as computing x directly for a single value of �. In

practice, using this acceleration technique increases the time required to set up the system

somewhat over direct computation, but computing each new value of x becomes essentially

instantaneous.
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3.5 Re-lighting

Once we have computed the existing lighting con�guration, we can use that information to

modify the lighting in the photograph. Again, we assume that we have a complete model of

the object, including its re
ectance, but we allow that the photograph contains �ne detail

that is missing from the model. That is, there are small-scale variations in the color of the

surface that are visible in the photograph but not present in the model|these details are

a large part of what makes a high-resolution photograph more realistic and appealing than

a rendering of our model. We want to preserve these details while changing the lighting on

the object.

The renderer, given a description of the existing and desired lighting, can predict the

change in the image by producing two rendered images: one under the existing lighting

(the \old rendering") and one under the desired lighting (the \new rendering"). The old

rendering should look like the photograph but lack detail, and the new rendering shows

generally how the modi�ed photograph should look. We must then adjust the photograph

to look like the new rendering, but do so without damaging the detail that distinguishes

the photograph from the old rendering. In other words, we want to use the two renderings

and the photograph to predict the desired photograph|the photograph that would have

been taken under the desired lighting.

In the case of a di�use surface, the radiance re
ected at each point is directly propor-

tional to the irradiance. This means that the ratio of the new to old radiance value at a

pixel depends only on the ratio of new to old irradiance at the surface seen by that pixel,

and not on its re
ectance. Thus the ratio of the new to old rendered image, even if there

is missing re
ectance detail, correctly predicts the ratio of the desired photograph to the

existing photograph.2

This observation that the renderer can correctly predict the ratio of new and old pixel

values even under some deviations from the modeled surface re
ectance leads to the idea

of using such ratios in re-lighting. In particular, we set the ratio of the modi�ed to existing

photograph equal to the ratio of the new to old rendering. That is, we multiply the pho-

tograph, pixel by pixel, by the ratio of the new to old renderings, resulting in the modi�ed

photograph.

When computing the ratio of the two renderings, the values of individual pixels near

the silhouette of the object can be very sensitive to noise in the computation. Noise in the

rendered images resulted in isolated extreme pixels, and we found it helpful to run a 3-by-3

median �lter over the ratio image to suppress these isolated outliers and reduce the noise.

To summarize, the process of re-lighting a photograph by using inverse lighting proceeds

2The surface need not be di�use; this argument works as long as the real BRDF di�ers from the
modeled BRDF only by a scale factor.
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as follows (Figures 3.3 and 3.4). First, the previously described inverse lighting procedure

is used to compute the existing lighting from the photograph, given the 3D model and the

camera position and focal length. The user modi�es this lighting solution to form a new,

desired lighting con�guration. The rendering system is then used in its normal forward

mode to create the new and old renderings from the desired and existing lighting, again

given the model and camera. Then the photograph is multiplied by the ratio of these

renderings to produce the result, a modi�ed photograph.

3.6 A Test with a Synthetic Photograph

We �rst demonstrate the system on a synthetic \photograph" to show how it works in

the absence of errors in the model and the camera position. The model is a scan of a

rabbit �gurine,3 and it consists of 6:9� 104 triangles plus a rectangular 
oor that it sits on.
The lighting con�guration used to render the \original photograph" has two spherical light

sources and a background that provides light from all directions. We modi�ed the lighting

con�guration to be much more strongly directional, with light coming predominantly from

above and to the viewer's left.

Figure 3.5 shows the results of this test. Part (a) shows the synthetic \photograph,"

and in (b) is the model rendered under the lighting solution found by inverse lighting.

There are some subtle di�erences between the two|most notably, the shadow on the 
oor

is less distinct and the left side of the rabbit's face is lit more strongly. The former e�ect is

because the true light source can only be approximated by summing up the basis lights; the

latter may be caused by the bright background contaminating some pixels on the model's

silhouette. The same model rendered under the new lighting con�guration is shown in part

(c), and the ratio image, which is the ratio of (c) to (b), is shown in (d). The modi�ed

\photograph" is shown in part (e). Because this is a synthetic example in which the 3D

model does exactly represent the scene, the intermediate renderings closely resemble the

\photographs." A rendering of the model done directly under the new lighting con�guration

is shown in Figure 3.6 for comparison with the re-lit image. This rendering represents the

correct answer that would be achieved by perfect re-lighting. Note that the intermediate

images are computed at a lower resolution, and the ratio image was �ltered using the

technique speci�ed in the previous section. This, along with the di�erences between the

original \photograph" and the old rendered image, prevents the re-lit \photograph" from

matching the comparison rendering exactly.

3Model courtesy of the Stanford 3D Scanning Repository.
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Figure 3.3: The data 
ow in the re-lighting system.
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(a)

(b)

(d)

(c)

(e)

� =

�

Figure 3.5: The results of testing the re-lighting algorithm on a synthetic photograph. (a) The original

\photograph." (b) The 3D model rendered under the lighting con�guration computed using inverse lighting;

this is the old rendered image. (c) The new rendered image. (d) The ratio of (c) to (b). (e) The modi�ed

photograph.
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Figure 3.6: The re-lit image from Figure 3.5 (e), left, compared with an
image rendered directly from the new lighting, right. The images are very
similar, but note that the shadow has not been completely removed and that
there are some aliasing artifacts along the edge of the model.

3.7 A Test with a Rigid Object

The second example of re-lighting is a picture of a well-behaved real object, a ceramic planter

that we painted with gray primer. We used a Cyberware 3030MS scanner (Appendix E)

with the Zipper and VRIP software packages (Section 4.1.2) to get the geometric model,

and we used a grey, Lambertian model for the re
ectance.

3.7.1 Camera Calibration

Because we are now dealing with real images, it is important to consider how the photograph

is related to the 3D scene.

The camera we used for this section is the Photometrics PXL 1300L, which is described

in Appendix D. We used the lens's nominal focal length, adjusted for the camera's indicated

focus distance using the thin lens approximation, for the image plane distance.

In order to establish the correspondence between the photograph and the surface of the

object, we needed to measure the position of the camera, relative to the coordinate system

in which the scanner measures the object. We achieved this using a planar sheet of the

targets described in Appendix C. We scanned it to establish the positions of the targets in

the scanner's coordinate frame, then photographed it at two rotations to get a well-spaced

set of points from which to calibrate the camera using the camera calibration algorithm

described in Appendix A.
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3.7.2 Results

The existing lighting in the photograph came from a large source to the left of the camera.

We changed the lighting to make it come from above and to the right side. The original

and modi�ed photographs are shown in Figure 3.7. The result is convincing, although

misregistration causes some silhouette artifacts.

3.8 Tests on Human Faces

Our �nal examples deal with the important but challenging task of re-lighting human faces.

In one example, we illustrate an application of re-lighting to image compositing, as shown

in Figure 3.10. We began with a snapshot of a person under o�ce lighting (a), and we

wished to paste in a photograph of a second person, taken under di�erent lighting (b); our

goal was for the subjects to appear to be standing next to one another. Simply compositing

the images would be unconvincing because of the mismatched lighting (c). Instead, we used

inverse lighting to compute the light distribution in the o�ce scene. With that information,

we re-lit the second photograph to match the lighting in the �rst before compositing the

images (d). In two other examples, we simply modi�ed the lighting on a face by directly

specifying the new lighting con�guration.

We used scans from a Cyberware 3030PS scanner (Appendix E) for the geometric model,

and we again assumed a grey, di�use surface re
ectance. Of course, this is only a rough

approximation of the BRDF of human skin, and a better model could be substituted in the

future without changing the algorithm.

There are two problems to be overcome before the Cyberware model of a head can be

used successfully. One is that much of the head (the hair, ears, and eyes in particular) cannot

be measured accurately by the scanner, and the resulting data must be ignored; the other is

that the remaining part of the scan does not correspond exactly to the photograph because

of movements made by the subject between the time of the scan and of the photograph. We

handled the �rst problem by �ltering the geometric data and the second by image warping.

3.8.1 Filtering out unreliable data

In order to reduce the worst errors in the basis images, we used some heuristics to limit the

system to pixels corresponding to geometry that can reasonably be expected to be accurate.

For scans of human heads, this especially meant �nding and ignoring the hair. We generated

a binary mask marking the usable regions of the scan as follows (Figure 3.8):

1. Compute a map of the local surface curvature at each sample point.

2. Filter the map with an iterated median �lter (size 3 by 3; 3 iterations).
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(a)

(b)

Figure 3.7: Re-lighting a photograph of a rigid object. (a) The original photograph; (b)
the re-lit photograph.
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3. Threshold to separate smooth (low curvature, reliable) regions from rough (high cur-

vature, unreliable) regions.

4. Find and remove isolated smooth regions smaller than a given area.

5. Find and remove isolated rough regions smaller than a given area.

For the purposes of inverse lighting, we used a small threshold area for the last step, since

our purpose was to avoid including any unreliable areas. However, for the purposes of

computing the change in lighting (Section 3.5) we used a large threshold, since the edges of

the small rough areas are visually objectionable in images.

3.8.2 2D image warps to correct registration

In some cases it is not possible to get the renderings into perfect agreement with the

photograph; this is particularly true with deformable objects like human faces, since only

rigid body motions can be accounted for by moving the camera. In order to avoid the

distracting artifacts that are caused near sharp edges (such as the silhouette of an object)

when the renderings are out of register with the photographs, we used a feature-based image

warping technique by Beier and Neeley [8] to manually distort the renderings to bring them

into alignment with the photograph. We then treated this warp as part of the camera

model during re-lighting. It might be possible to automate the speci�cation of this warp,

especially for situations where the registration errors are very small.

3.8.3 Results

The re-lighting results for the compositing test are shown in Figure 3.9. The illusion in the

area of the face is reasonably convincing to the eye, but there are two artifacts that detract

from the e�ect. First, because we are using a Lambertian model for the skin's BRDF, we

cannot properly account for any non-Lambertian features in the image. For instance, there

is a specular highlight on the subject's right cheek that was caused by the light coming from

the left of the image. The highlight persists, though reduced, in the modi�ed photograph,

even though the light that made the highlight has been moved elsewhere, and no new

highlight appears from the new light source position.

The second, and more obvious, artifact is the stark contrast between the darkened side

of the face and the adjacent, unmodi�ed area of hair. The image is modi�ed only in the

area that is occupied by the model, which cuts o� at the edge of the hair. This leads to

a sharp dividing line at the edge of the model in areas where the image is being changed

signi�cantly. Not only are these sharp edges very noticeable to the human eye, but by

providing bright reference tones they create the appearance that the modi�ed skin areas
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(a)

(b)

(c) (d)

Figure 3.8: Results of �ltering range data. (a) The range data from a typical scan; (b)
the �ltered curvature map computed from that data; (c) the mask used for inverse lighting;
(d) the mask used for lighting modi�cation.



35

(a) (b)

Figure 3.9: Re-lighting a photograph of a human face. (a) The original
photograph; (b) the re-lit photograph.

nearby have a lower re
ectance than the rest of the face. This destroys the desired illusion

that they are lit less brightly.

Two more examples of re-lighting faces are shown in Figures 3.11 and 3.12. The original

photographs were taken using a large rectangular area source behind and above the camera,

producing a symmetrical, frontal lighting. In the �rst case, we replaced this source with a

large area source to the subject's left, and in the second case we speci�ed light coming from

overhead. Again, the results in the area of the faces are convincing, and the subjects' dark

hair greatly reduces the artifacts at the edge of the forehead. In Figure 3.11, the subject's

evenly lit shirt causes the same type of context problems that we saw in the previous

example: note how covering up the bottom part of the image greatly improves the illusion.

Also, the problem of specular highlights causes the results to appear subtly unrealistic in

some areas.

3.9 Conclusion

In this chapter we have demonstrated the ability to solve an inverse rendering problem to

�nd the lighting in a photograph. The algorithm combines the strengths of physically-based

rendering with techniques for solving linear inverse systems. We have also demonstrated the

application of the results of inverse lighting to the task of modifying lighting in photographs,

both in controlled test cases and in a very challenging case that is important to photography,

that of a human face.

The ability of these algorithms to use geometric data to understand and manipulate

lighting in three dimensions illustrates the possibilities of processing photographs armed

with this kind of additional information. Given the rapidly advancing �eld of 3D scan-
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(a)

(b)

(c)

(d)

Figure 3.10: Using re-lighting as an aid to compositing. (a) The source photograph; (b)
the destination photograph; (c) the photographs composited directly; (d) the photographs
composited with re-lighting.
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ning and range imaging, future digital cameras could incorporate the hardware required to

measure 3D geometry in the same way that current cameras incorporate 
ashes to provide

illumination. This would allow for a variety of graphics operations using the geometry itself,

but, as this chapter demonstrates, it would also open up new possibilities for processing the

high-resolution photograph as well.

3.9.1 Future work

Many models for BRDF have been presented in the computer graphics literature, and

the mathematics of our system is capable of handling models more sophisticated than

the Lambertian model used in this chapter. Of particular interest with regard to faces is

Hanrahan and Kreuger's work on the BRDF of materials like skin [29].

We chose the simplest possible basis for Lb, consisting of piecewise constant functions

that cover the sphere uniformly. Other bases might well be used to advantage, both

smoother bases and more specialized bases that concentrate the detail in areas of greater

importance.

The image warps we use to correct for errors could be �t automatically using an edge-

alignment-based technique, especially if the camera is very nearly aligned to start with. It

might also be interesting to work with a generic head model that doesn't match the subject

very well at all but depends on the image warping to account for the di�erences.

In cases where the geometric model does not describe the entire object being re-lit,

our practice of ignoring all pixels outside the image of the model leads to the introduction

of sharp features at the edges of the modeled surface. To make it practical to re-light

photographs with incomplete models, we must �nd ways to make the transition less visually

apparent without introducing still more artifacts in the process.

Our image ratio technique assumes that all unpredicted features in the image are due to

variations in surface color. Although this is often true, details in an image are also caused by

�ne geometric detail, and this type of variation is not handled well by the ratio technique.
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Chapter 4

Photographic Texture

Measurement

A great deal of work in the �elds of optical engineering, computer vision, and computer

graphics has gone into developing machines and algorithms to precisely measure the geome-

try of 3D surfaces. With the tools that have resulted, we can scan an object at sub-millimeter

resolution and assemble the resulting data into a complete 3D surface model ready to be

used for rendering, computer-aided design, or other purposes.

For realistic rendering, however, these models lack an accurate description of the BRDF

of the surface, so that physically meaningful results are impossible. Some scanning methods

do provide a spatially varying value for the surface color, but this value is normally a mea-

surement of radiance re
ected in a particular direction under particular lighting conditions,

rather than a measurement of an intrinsic property of the surface. For example, techniques

that compute geometry by analyzing full-frame images often use the pixel values from those

images as measurements of \surface color" [51, 42, 50]. Some laser triangulation systems,

like the Cyberware scanner (Appendix E) used in this work, return colors from a separate

camera, using illumination independent from the triangulation laser, while others, such as

the system of Rioux et al. [52], use a pseudo-white laser so that color information may be

gathered directly from the same signal used for triangulation. In all these cases, the texture

map that describes surface color includes both lighting-dependent e�ects, such as shadows

and shading on curved surfaces, and view-dependent e�ects, such as specular highlights1

and retrore
ection.

These faults may be remedied in part by using very uniform lighting. If scanning could

be done in a perfectly uniform radiance �eld|a di�cult undertaking at best|then the

1In this chapter, we will adopt a widespread usage and loosen the term \specular re
ection"
to include the specular-like part of directional di�use re
ection. By this we mean a component of
directional di�use re
ection that occurs for con�gurations close to specular con�gurations.
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texture maps so derived would measure hemispherical-directional re
ectance, a signi�cant

improvement over the situation with nonuniform lighting. In the case of a convex di�use

surface, this would in fact be an intrinsic value su�cient to describe the surface's re
ective

properties. Unfortunately, any non-convex object will always shadow itself, leading to

inaccuracies even in the presence of uniform illumination.

The problem that must be solved, then, is to start with measurements of radiance

re
ected in certain directions at various points on the object's surface and end up with an

intrinsic description of the surface's re
ectance|one that is valid for any viewing direction

and any lighting con�guration. In terms of the rendering equation presented in Chapters 1

and 2, we need to start with part of f and solve for K. Since we have scanned the object's

geometry, G is known, and if we also know h we have a workable inverse rendering problem.

Solving for K in full generality by measuring a whole BRDF at every point is too great

an undertaking. That would require hundreds of measurements at every surface point,

and since each photograph provides at most one view of a point, we would have to take

an even larger number of photographs. Because rendering requires full spatial detail for

visual richness, we chose to retain high spatial resolution while reducing the amount of

data required by representing the BRDF at each point using a BRDF model with a small

number of parameters. In fact, in many of the practical examples to follow, we have used

the simplest possible, one-parameter BRDF model: a constant, representing a Lambertian

surface.

To obtain measurements of re
ected radiance, we opted to use still photographs from a

digital camera, rather than using the color values from the scanner, because of the greater


exibility, speed, resolution, and dynamic range that a high-quality digital camera can

deliver. Thus, our input data consisted of a set of photographs of the object, each from a

known camera pose and each with known lighting. The inverse rendering problem was to

construct, based on the samples of f provided by the photographs, a representation of K

in terms of the spatially-varying parameters of a BRDF model.

4.1 Prior Work

4.1.1 Texture mapping

Since the early days of computer graphics, texture maps have been used to enrich renderings

by using images to modulate the color of surfaces [11, 31]. In the context of physically

realistic rendering, texture mapping means using one or more images to control the spatial

variation of a surface's BRDF.

Images for texture mapping can come from a variety of sources. Many textures come

from photographs or artists' illustrations, and in these cases the images are always stored
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in a sampled representation. Textures can also be generated algorithmically, in which case

they can be computed and sampled ahead of time or generated on the 
y as they are needed.

Whatever their origin, an important problem in the use of texture maps is de�ning how

the image is mapped onto the surface. Most texture maps, whether procedural or photo-

graphic, are inherently 
at in that they are computed, drawn, or photographed in a plane,

and they must be distorted to be mapped onto any curved surface that is not developable

(cannot be formed by rolling a piece of paper). Some exceptions to this rule, textures that

are not inherently 
at, are procedural textures computed using the proper distance metric

for a particular curved surface [62, 66, 23, 40], textures from 3D paint programs [28, 2],

and solid textures. The texture maps we describe in this chapter, being measured from the

actual surface itself, also fall into this category, and they have no distortion when mapped

onto the surface. All we require is a mapping to a 
at domain, and any geometric distortion

induced by that mapping will be exactly canceled by the mapping back to the surface for

rendering.

How a texture map is mapped to the surface is described by a function � : S � M !
D � IR2 that associates some point in the texture map (de�ned on the domain D) with

every point in the area S of the surface that is covered by the texture map. We call � a

texture embedding. It allows the renderer to look up the appropriate information from the

texture map when performing re
ection calculations at the surface. There are a number of

techniques for de�ning texture embeddings [31, 10, 9], but the resulting functions can have

a variety of problems. Embeddings that produce extreme geometric distortion can force the

use of very high resolution texture images to maintain an adequate sampling rate across

the entire surface. Few methods can construct functions that are bijective (that is, each

surface point maps to a single texture point and vice versa) for arbitrary surfaces. Also,

discontinuities at the edges of texture maps lead to troublesome boundary conditions and

possible discontinuities of texture on the surface.

All of the properties just mentioned|low distortion, bijectivity, and continuity|are

important to our algorithm for constructing textures on scanned surface models. The

mathematics of smooth manifolds guarantees that all these properties can be achieved

locally, in a neighborhood of any point. This leads us to use an approach to representing

functions over manifolds that is often called an atlas of charts. This method is described in

Section 4.2.

4.1.2 3D scanning and re
ectance modeling

Our work builds upon techniques for generating accurate, detailed 3D models of real objects,

particularly Turk and Levoy's Zipper [63], a system for aligning triangle meshes in space

and stitching them into surfaces, and Curless and Levoy's VRIP [15], a program that uses a
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volumetric intermediate representation to merge several range images into a single surface.

It also builds on existing surface parameterization techniques [18].

Debevec, Taylor, and Malik, in their work on rendering architectural models [16], also

used photographs to construct texture maps for models of real objects. However, the geo-

metric models they used were much simpler than the scanned models used in this chapter.

Also, they did not attempt to measure the surface's intrinsic re
ectance, instead model-

ing the re
ected radiance under the prevailing illumination, although they did use view-

dependent texture mapping to allow for directional variation in the re
ected radiance.

The �eld of computer vision has also dealt with the relationship between re
ectance

and radiance recorded in photographs. Nayar, Ikeuchi, and Kanade [44] have addressed the

problem of measuring re
ectance in the presence of interre
ections, in the context of shape

from shading via photometric stereo. Under the assumption of di�use surfaces, they infer

both geometry and re
ectance using several photographs from one camera position with

di�erent, known, light sources.

As we do in this work, Sato and Ikeuchi [53] have determined spatially varying surface

properties from images of a scanned object. Their experimental setup is similar to the one

used in this chapter, but they concentrate on �tting a dichromatic (di�use plus specular)

re
ection model to determine a single material for each of a few regions. Similarly, Baribeau

et al. [7] work with registered range and color images, estimating parameters of a dichro-

matic model for one or more objects with uniform material properties. In contrast, we �nd

high-resolution texture maps without dividing the surfaces into regions according to BRDF.

In later work [54] Sato, Wheeler, and Ikeuchi used their system to estimate spatially varying

dichromatic re
ectance, addressing a similar problem to the one in this chapter. However,

their approach to handling the fundamental di�culties (described in Section 4.3.2) asso-

ciated with measuring spatially-varying specular re
ection is rather ad hoc, and the test

case they present is a primarily cylindrical object, which greatly simpli�es the problem by

producing a linear specular highlight that sweeps across the whole surface. Also, they rely

on separating the specular and di�use components in color space, which inherently depends

on having a saturated di�use color.

Ofek et al. [47] presented an algorithm to construct texture maps using measurements

from a sequence of photographs. Their algorithm's main strength is its ability to account

for the di�erent sampling rates that result from very di�erent views of a surface. They

use robust statistics to ignore specular re
ections, but they do not attempt to model the

surface's re
ectance; rather, their texture maps record the di�use component of the radiance

re
ected from the surface under the lighting conditions at the time the photographs were

taken. Their technique works in principle for arbitrary surfaces, but they only demonstrate

it on planes and cylinders, and they do not discuss the di�culties of handling more general
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geometry.

Some existing range scanners (including the scanner used in this work) do provide tex-

ture maps with the surface models they generate, but the values in the texture maps record

the radiance re
ected from the surface, rather than the re
ectance information required for

rendering [52].

4.2 Texture Representation

The output of our algorithm is K, represented by a function M ! IRp, where M is the

manifold representing the object's surface and p is the number of parameters to the BRDF

model. Representing a function on a geometrically complex domain with arbitrary topology

requires some care, particularly if we hope to avoid highly irregular sampling density. As

described in the previous section, we used an atlas of overlapping charts that together cover

the surface. We de�ne separate functions on each of a collection of overlapping domains,

which we call texture patches, that together cover the entire surface, but we require the

functions to agree where their domains overlap. This idea is likened to an atlas of the world

that is composed of many maps, or charts: each chart covers part of the Earth's surface

continuously and with low distortion, and together the charts map the entire globe. Any

given point can be found on one or more charts, and since the charts agree where they

overlap we may consult any of those charts with the same result.

To describe K by this method, we must de�ne n texture patches, Si � M, each home-

omorphic to the open disc, whose union covers all of M. In addition, we need n homeo-

morphisms, called texture embeddings, �i : Si ! D, where D is the open unit disc in IR2.

We would also like �i to induce as little metric distortion as possible (that is, angles and

relative lengths should be preserved as well as possible). To complete the representation

we de�ne texture maps mi : D ! IRp. Then for a surface point x 2 Si the corresponding
BRDF parameters are mi ��i(x). Figure 4.1 illustrates Si, �i, and mi. Since x may belong

to more than one region, the maps must agree where they overlap: if x 2 Si and x 2 Sj
then mi � �i(x) = mj � �j(x). In practice, since we use a sampled representation of mi,

this equality will not be exact; rather the two sides should agree up to the precision of our

representation.

To compute these three parts of the output|the texture patches, the texture embed-

dings, and the texture maps|we �rst compute the Si's by dividing the surface into disjoint

patches and adding an extra layer of triangles to each (Figure 4.2). Then we compute the

�i's using a linear least squares computation to approximate a harmonic map to the unit

disc (Figure 4.3). The mi's are the output of the re
ectance estimation process, which is

the topic of the next section.
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�i mi

Si

M

Figure 4.1: How texture patches collectively cover the object. Each of the
overlapping texture patches Si has an associated texture embedding �i that
connects it with the texture map mi.

We start with a triangle meshM that represents the topology and geometry ofM. The

Si's are computed by �rst constructing Voronoi-like regions [18] on the surface, starting

from a Poisson-disc-like distribution of seed triangles. The seed triangles are chosen by the

following algorithm.

i 0
Unmark all triangles
while 9 unmarked triangles

Choose a random unmarked triangle ti
Mark all triangles within a distance r of ti
i i+ 1

The triangles t1; : : : ; tn, which are all separated by a distance of at least r, are the seed

triangles. The parameter r is chosen by the user. The Voronoi-like region S0i then contains

all triangles that are closer to ti than to any other seed triangle (triangles equidistant from

two or more seed triangles may be assigned arbitrarily)2. This partition of M can be

computed in linear time using breadth-�rst search [14].

2Distances between two triangles are measured by the minimum number of edges that must be
crossed to get from one triangle to the other (that is, path length in the dual graph to M).
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 4.2: Building texture patches on a sphere. (a{b) The seed triangles are chosen in
a Poisson-disc-like distribution. Each time a triangle is chosen, a region surrounding it is
marked. Each new seed triangle is chosen from the unmarked portion of the surface. This
phase completes when the entire surface is marked. (c{e) Voronoi-like regions are formed
around each seed triangle by performing a parallel breadth-�rst search across the surface.
Once the maps have grown to cover the whole surface (e), this phase is complete. (f) To
each texture patch a layer of triangles is added, so that the �nal patches overlap.
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Figure 4.3: Constructing the harmonic map from a texture patch to the unit circle. The
�rst step is to minimize the squared sum of the edge lengths in the texture domain (top
row), and the second step is to use the harmonic edge weights to re�ne the solution (bottom
row). The left column shows how the triangles in the texture patch are mapped to the unit
circle, and the right column shows a regular checkerboard in texture space mapped onto
the surface. Both algorithms produce low large-scale distortion, but the jagged edges in the
upper row indicate high local distortion in the unweighted solution. This is expected, since
the unweighted solution does not take into account the shapes of the triangles in the 3D
model.
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To obtain the overlapping patches Si, we add to each S
0

i all triangles that share a vertex

with a triangle in S0i, then add any triangles that are surrounded. Speci�cally, the procedure

is: mark all vertices of triangles in S0i; mark all vertices of triangles with any marked vertices;

�nd all triangles with all vertices marked and put them in Si. Note that r must be set low

enough so that all patches turn out homeomorphic to the disc; if it is set high enough that

a patch can grow to meet itself, this condition may not be satis�ed.

Once the Si's have been chosen, we de�ne �i for each Si as a piecewise linear function.

For every vertex x in Si, we explicitly compute �i(x), known as the texture coordinates of x.

From these coordinates, �i is de�ned for all non-vertex points by linear interpolation. To

compute the texture coordinates at the vertices, we �rst �x the texture coordinates of the

vertices on the boundary of Si at points spaced around the unit circle, with the arc length

between points proportional to the length of the edge in M between the corresponding

vertices. With these boundary conditions, we then solve a linear system described by Eck

et al. [18] to �nd an approximation to the unique harmonic map from Si to the unit disc,

which minimizes metric dispersion, a measure of local distortion of shape. The reader is

referred to the paper of Eck et al. for details on this system. We solve the large, sparse

linear least squares system by using Gauss-Seidel iteration on the normal equations.3 To

provide a starting point for this process, we �rst run the same iteration with uniform edge

weights (thus minimizing the sum of squares of the edge lengths4). Figure 4.3 illustrates

the results of this system, and demonstrates why it is important to use the edge weights

that lead to an approximate harmonic map rather than using a simpler algorithm such as

the unweighted system we use to �nd our starting point.

4.3 Estimating Re
ectance

With a surface model, a parameterization of the surface, and a series of photographs, we

are ready to compute the re
ectance of the surface. Our algorithm �rst gathers all the

observations of radiance re
ected from a particular surface point by sampling all the pho-

tographs in which that surface point is visible and illuminated. From those measurements,

and from the known geometry of the surface, camera, and light source, the incident and

exitant directions and BRDF value are computed for each observation. These samples of

the surface's BRDF at that point are then used to estimate parameters of a BRDF model.

In practice, this means averaging the values, with weights that depend on the incident and

exitant directions, to obtain an estimate of the Lambertian component of surface re
ection.

3The usual cautions about the instability of the normal equations do not apply to this large-
residual problem.

4This is the con�guration that a network of springs with zero rest length would take.
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surface patch

object

camera
light source

fr =?

Figure 4.4: At left, the object is photographed from a number of views with
point source illumination. At right, the problem of estimating re
ectance at
a surface point.

For reasons discussed in later sections, the specular part of the BRDF must be handled

later by combining measurements from di�erent surface points.

The actual processing of a particular sample point p in a texture map mi proceeds as

follows. We �rst compute x = ��1(p), the corresponding point in 3-space, and determine

by ray casting which camera positions and light source positions are visible to x. For each

photograph for which both are visible, we sample the image at the appropriate location to

�nd the re
ected radiance, Le, and we compute the irradiance I from the distance to the

light source. In the absence of interre
ections (which we ignore), Le=I is a measurement of

fr(x; !i; !e), where !i is the direction to the light source position and !e is the direction

to the camera position. To refer to these measurements in the equations that follow, we

will let !i(p)k and !e(p)k represent the incident and exitant directions for the kth mea-

surement at the sample point p (we will use this notation again in Section 4.7). Together

the con�guration (!i(p)k; !e(p)k) is x(p)k, and the corresponding measured BRDF value

is y(p)k. Since the number of measurements is di�erent for each point, we must consider

it a function of position as well; we will let n(p) be the number of measurements at p. It

should be noted that p is a discrete variable that takes on values only on a regular grid in

each texture map's domain.

The task of re
ectance estimation, then, is to choose parameters to �t the BRDF to

the several measurements of fr(x; �; �) (Figure 4.4). To conform to the usual notation of

least-squares �tting, we will denote the texture map mi : D ! IRp by the symbol a.

Thus a(p) is the vector of p parameters that de�nes the BRDF at texture point p 2 D.
Let fm(a(p); (!i; !e)) be the value of the BRDF model for the parameters a(p) at the

con�guration (!i; !e). The goal of BRDF �tting is, for each p, to set a(p) so that
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fm(a(p);x(p)k) agrees with y(p)k for k = 1; : : : ; n(p). The least squares approach to this

problem is to solve the following problem for each p:

min
a(p)

n(p)X
k=1

�(p)2k(fm(a(p);x(p)k)� y(p)k)2 (4.1)

where �(p) is a vector of n(p) weights that control the relative importance of �tting the

di�erent measurements. In the case of a Lambertian model, this means �tting a constant

function, or, in other words, averaging the estimates. We will assume a Lambertian model

for now and revisit the issue of more sophisticated models in Section 4.3.2.

4.3.1 Estimating with a Lambertian BRDF model

When we average the BRDF estimates from the various images of a point, we should weight

each measurement according to its reliability. This reliability depends on the geometric

con�guration of the measurement in three ways:

1. Samples with near-normal illumination are more reliable than samples with near-

grazing illumination, because the signal measured by the camera is proportional to

cos �i. This gives samples with low �i better signal-to-noise ratio than samples with

high �i.

2. Samples from views nearly normal to the surface are more reliable than samples from

near-grazing views, because the density (on the surface) of samples from a particu-

lar image is proportional to cos �e. To prevent the blurry texture that results from

projecting an image at an oblique angle from overpowering the sharp texture from a

near-normal view, the weight must depend on �e.

3. Samples that include signi�cant contribution from specular re
ection are less reliable

than those that do not. This is because we are estimating only the di�use component

of the surface's BRDF. Most pixels in most views of an object that exhibits both

specular and di�use re
ection will give no evidence of specularity, so the large majority

of measurements can be used safely under a Lambertian assumption. However, those

pixels that do show specularity must be down-weighted to avoid contaminating the

di�use component with pasted-on highlights.

We accounted for each of these in
uences on the reliability of samples by introducing

a factor into the weight used to average the samples. The three weighting factors, �e (for

exitant direction), �i (for incident direction), and �s (for specular re
ection) are given in

Table 4.1. The complete algorithm is given as pseudocode in Figure 4.5. In this code,

�(!i; !e) = �i � �e � �s. Note that the quantities �i, �e, and � in the expressions for the

weights are implicit functions of !i and !e.
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Table 4.1: Geometric considerations a�ecting the reliability of estimates of di�use re
ection
and the weighting factors used to account for them. The parameters k, c, p, �max, and q
are set by the user. The expression x " y is the maximum of x and y. Similarly, # means
minimum. The symbol � denotes the angle between the exitant direction and the direction
of specular re
ection from the incident direction.

Weighting factor

Angle of incidence �i = (cos �i)
k

Angle of exitance �e = [0 " (cos �e � c)]p
Nearness to specular direction �s = sin[�2 (1 # �=�max)]

q

foreach texture patch i
foreach pixel position pj 2 Di

x  ��1i (pj)
foreach camera k

if x is not visible to camera k continue
y  projection of x into camera k's image plane
!i;k  direction from x toward light source k
Ik  irradiance at x due to light source k
if Ik = 0 continue
Le;k  radiance value at y in photograph k
!e;k  direction from x toward y

�t  
P

k �(!i;k; !e;k)
if �t = 0 continue
mi(pj)  (�=�t)

P
k [�(!i;k; !e;k)Le;k=Ik]

Figure 4.5: Pseudocode for the texture map construction algorithm.
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4.3.2 Using non-Lambertian models

To accurately capture the re
ective behavior of most surfaces, a Lambertian BRDF is

insu�cient. We would prefer to use a BRDF model that can match other important features,

most notably specular re
ection. Unfortunately, we cannot simply �t a more sophisticated

model separately at each point by the same method we used for the Lambertian model.

Some rough calculations based on simple assumptions will show why this is true. Let us

take as our example a hypothetical BRDF model with three parameters: di�use re
ectance,

R, magnitude of specular lobe, ks, and width of specular lobe, �. Assume we use m random

camera/light source pairs, so that with minimal occlusion each point will be visible to

about half the cameras, and illuminated by about half the light source positions, leading to
n
4 BRDF samples for a typical surface point. Most of these samples will contain essentially

no information that can be used to determine ks or �, since these parameters a�ect only

the specular highlights, which occupy a small part of each image. To have any hope of

solving for the full BRDF model requires at least three distinct measurements, two of which

must contain signi�cant contributions from specularity. Such a set of measurements is not

a su�cient condition for success, but it is surely a necessary one.

These requirements on the sample con�gurations have important implications for the

number of data that must be collected. Even for a relatively low-gloss surface that exhibits

signi�cant specularity up to 10� from the specular direction, the set of con�gurations where

specularity can be observed is less than 2.5% of the overall BRDF parameter space5. If the

camera and light positions are randomly and uniformly distributed (and therefore !i and !e

are uniformly distributed6), this means that even for the average point to have su�cient data

would require 80 BRDF samples per point, or 320 photographs. An elementary probability

calculation �nds that to expect at least 90% of the points to be solvable requires more

than 600 photographs, and to increase that �gure to 99% requires more than 1000. For

BRDFs with narrower specular lobes the problem becomes much worse, and non-uniform

distributions of sample con�gurations can leave holes even with very large numbers of

samples. For non-convex surfaces, occlusion will reduce the number of samples per surface

point for the same number of photographs; in fact, there may be areas where no specular

re
ections can ever be observed.

Clearly, we need a technique for making BRDF estimates at points with too few obser-

vations to be solved independently. One approach is to make use of data from surrounding

areas, and a way to achieve this is outlined in Section 4.7.

If we take the idea of using data from surrounding areas to its logical extreme, we can use

data from the entire surface by assuming that some parameters of the BRDF are spatially

5in the measure � � �.
6also with respect to the measure � � �.
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constant while others vary. If we let the di�use parameters vary while using a single value

for each specular parameter, we will have su�cient data to estimate all the parameters (in

fact, the specular re
ection is then being measured in much the same way as the BRDFs of

Chapter 5). For a material with a homogeneous surface layer over a substrate with spatially

varying, Lambertian re
ectance, this assumption is appropriate, and it allows us to use all

the data about specular re
ection gathered from the entire surface to solve for the single

set of specular parameters describing that re
ection, while still determining the spatially

varying di�use re
ectance. In fact, we can use the Lambertian estimation algorithm of the

previous section to �nd the (spatially varying) di�use component, then �t a BRDF model

to the residuals of that �t, which represent the specular re
ection.

4.4 A Synthetic Example

To demonstrate the principle of our texture map construction technique, and to verify the

correct operation of our software, it is helpful to consider an example in which the solution

is known. Figures 4.6, 4.7, and 4.8 show such an example. The photographs used as input

to the program, shown in Figure 4.6, were computed by a renderer, using a sphere for

the model, a world map as the texture, and 20 randomly chosen camera and light source

positions. The texture maps were then constructed using a tessellated sphere with 3:3�104
triangles. The resulting maps are shown in Figure 4.7, and the complete model is shown

rendered in Figure 4.8. In the maps, some regions can be seen to have artifacts associated

with the sphere's tessellation|these are areas where the surface was illuminated and/or

viewed only very obliquely. For this example the parameters were set to allow texture to

be generated in these areas. Under normal use they would be marked as having too few

suitable views, and we would go back to take more photographs of the poorly-observed

areas.

4.5 Measurement Setup

We used the Kodak DCS 420 digital still camera (Appendix D) to photograph objects

sitting on the Cyberware scanner's turntable (Appendix E), with the Nikon SB-16 
ash unit

providing near-point-source illumination (Figure 4.9). In order for a set of photographs to

be of use in determining texture maps, the camera pose relative to the object must be known

accurately, as must the light source position. We established the latter by attaching the

light source rigidly to the camera|the position of the source could then be determined from

its �xed location relative to the camera. We found the positions of the camera relative to

the object by measuring the positions of both the camera and the object in the coordinate
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Figure 4.6: The synthetic photographs used as input to test and illustrate the texture
mapping algorithm.
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Figure 4.7: The texture maps computed from the images in Figure 4.6.

Figure 4.8: A rendering of the sphere with the computed textures mapped onto its surface.
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Reflectance
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Camera

Light source

Object

Figure 4.9: The setup used for photographing the objects.

system of the scanner. We located the camera by scanning and photographing a set of

targets and using the resulting correspondences between image points and 3D points to

determine the camera pose (Appendix A). The object's position was established by taking a

scan and aligning it, using Zipper (Section 4.1.2), with the previously scanned and assembled

geometric model.7 By this two-link chain of transformations, from object space through

scanner space to camera space, we established the positions of the light source and camera

relative to the object.

To have radiometric calibration relating the digital readout of the camera to meaningful

radiance measurements, we assumed uniform 
at �eld response for the camera and an

angularly uniform illumination �eld for the light source (shown to be valid by experiments

with the same type of lens and the same light source in Appendix D) and established the

single scale factor required to account for camera responsivity and light source intensity

by photographing a calibrated di�use white reference sample. This sample was included in

every photograph, because the light source intensity varied considerably from one 
ash to

the next.

To avoid having to scan the object for every photograph, we placed the object on the

scanner's turntable, scanned it once, then used the turntable to precisely rotate the object

to several positions while it remained �xed relative to the turntable. This led to sets of

camera positions arranged on circles around the object: a series of photographs, separated

7In some cases we re�ned Zipper's estimates using a few manually speci�ed point correspondences,
gaining a mild improvement in registration.
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by turntable rotations, led to one circle; the object was repositioned on the turntable to

expose previously hidden surfaces, and another series of photographs was taken, forming

a second circle. This process of repositioning the object, scanning it, then taking a series

of photographs around the circle was repeated as often as necessary|normally resulting in

three or four circles with six to eight exposures per circle (Figure 4.10).

4.6 Results

We put the algorithm described in Section 4.3.1 into practice using the setup described in

Section 4.5. We scanned and built texture maps for two complex natural objects: a jagged

piece of rock and a colorful squash.

The �rst object, a rock 23 cm in length with mixed composition, has a very complex

surface texture but exhibits little noticeable specularity, so the Lambertian BRDF model

is appropriate and we need not use the specular exclusion factor �s in the algorithm. The

geometric model was built using Zipper and VRIP (Section 4.1.2) from 57 individual range

images, resulting in a manifold triangle mesh with 6:5� 105 faces, which is shown rendered

with homogeneous gray re
ectance in Figure 4.11. The parameterization process broke

the surface into 42 texture patches, which are illustrated in Figure 4.12. Some of the 16

photographs are shown in Figure 4.13. The resulting texture maps are shown in Figure 4.14;

areas where the accumulated weight was zero are colored blue. A rendering of the texture

mapped model and a photograph taken under similar conditions are shown in Figure 4.15.

One objectionable feature of the resulting color maps is that they are blurred and contain

multiple images. This is caused by averaging misregistered samples of the surface texture;

the misregistration can be caused by inaccuracies in either the geometry or the camera pose.

The second object, a multi-colored squash about 12 cm in diameter, has fairly uniform

specular re
ection across most of its surface. There are signi�cant variations from this

uniformity in a sunken di�use patch at the stem end, a di�use protrusion at the blossom

end, and several small blemishes in the surface elsewhere. The model, which was built from

22 range images, contained 4:2 � 105 triangles and is shown in Figure 4.16. The surface

was divided into nine patches (Figure 4.17) and photographed 24 times (Figure 4.18). The

resulting textures are shown in Figure 4.19; for this simpler object there are almost no areas

that were not observed su�ciently. The resulting rendering is compared to a photograph

in Figure 4.20.

The color di�erence between the photograph and the rendering is due to a di�erence

in light sources. The xenon strobe used to take the photographs for the texture maps

(spectrum shown in Figure D.2), with its strong blue component, is well matched to the

spectral response curves of the DCS 420, which has very weak blue response, but the
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Figure 4.10: A typical set of camera positions for texture measurement. Each circle of
cameras results from photographing the object at several di�erent turntable rotations while
the object remains stationary on the turntable. Picking the object up o� the turntable and
repositioning it leads to another circle.
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tungsten light source used to take the comparison photograph has very little blue, which

compounds the camera's weakness and leads to very poor color rendition.

The specular down-weighting term was used for this example, and it successfully elimi-

nated the e�ect of specular highlights in the resulting texture maps. Again, however, there

is some evidence of misregistration in the textures.

We applied the technique of �tting a spatially uniform BRDF model to the residuals

of the di�use estimate to account for the specular re
ection, which is clearly missing from

Figure 4.20. Using the isotropic version of Ward's model [64], we obtained the parameters

used to render the image in Figure 4.21. Note that the specular highlights match the

photograph reasonably well, though the small-scale inaccuracies in the model prevent a

perfect match.

4.7 Future Work

In Section 4.3.2 we explained why not enough data are available data to measure parameters

describing specular re
ection independently at every surface point in the same way we were

able determine the di�use re
ectance. We must somehow use data from neighboring parts

of the surface to make a reasonable guess where it is impossible to make an independent

estimate. We propose to do this by using a regularization term to encourage the parameters

to vary smoothly across the surface when they cannot be determined completely at each

point. Conceptually, we want an algorithm that will choose the smoothest function that

�ts the available data; this will result in a solution that is determined by the data where

the right data are available and interpolates smoothly across regions where the data do not

fully constrain the answer. In actual practice, there is no sharp dividing line where the

parameters become underconstrained; instead, the �tting equations become increasingly ill-

conditioned as the measurements become less suitable for determining the parameters. By

simply adding a regularization functional to the quantity we minimize for the least squares

�t, we can let smoothness take over gradually as the data cease to constrain the parameters.

We start with the previous minimization functional from Equation 4.1. Solving that

equation separately for all p is equivalent to solving mina F (a) where

F (a) =
X
p

n(p)X
k=1

�(p)2k(fm(a(p);x(p)k)� y(p)k)2: (4.2)

The sum over p runs over all sample points in the texture map. Since no terms in the outer

sum refer to more than one texture sample point, the sum is minimized by the parameters

that minimize the inner sum at each p. To introduce regularization, we add the following
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term, a scaled estimate of the L2 norm of the �rst derivative of a:

S(a) =
X
p

X
q adjp

kD�(a(q)� a(p))k2 : (4.3)

Here � is a p-vector of weights controlling the importance given to smoothness in each of

the di�erent BRDF parameters, and D� is a diagonal matrix with � along the diagonal.

The expression q adjp means q and p are adjacent grid points in a texture domain.

Adding this functional complicates the task of solving the system because it can no

longer be treated separately at each point. It is a large, sparse, nonlinear least-squares

problem with tens to hundreds of thousands of variables. It is sparse because each variable

only interacts with a few other variables: F connects all the parameters at a particular data

point, and S connects the same parameter at neighboring points. This lends a structure

to the matrix problems that arise from these equations, which we must exploit to have a

tractable algorithm. To put the re
ectance estimation system into a more compact form,

let g(a) = F (a) + S(a).

The widely used Gauss-Newton and Levenberg-Marquardt methods [49] for nonlinear

least squares problems require the solution of square linear systems with the symmetric

matrix g0(ac)
T g0(ac), where ac is the estimate of the parameters at the current step in the

iteration.8 This matrix is non-zero at entry (i; j) only if variables i and j interact with

one another. Consider a single texture map with ny rows and nx columns. If we order

the variables �rst by row, then by column, then by parameter (that is, the parameters

for a particular point are grouped together, and the points are listed in English reading

order), then the structure of g0(ac)
T g0(ac) is as diagrammed in Figure 4.22. Since all the

parameters at a point can interact through F , there are p � p blocks of nonzero entries

along the diagonal. The horizontal connections between neighbors lead to entries on the

pth diagonal,9 and the connections between vertical neighbors lead to entries on the (nxp)
th

diagonal.10 To solve this sparse linear system, we turn to the method of conjugate gradients

[25], an iterative algorithm that solves linear systems with only the need to multiply by the

matrix|a computation that is quite e�cient for a sparse matrix like ours. The conjugate

gradient algorithm can be further accelerated by using a preconditioner, an approximation

to the system that can be solved e�ciently by direct means. We use a variant of the

incomplete block Cholesky preconditioner described by Golub and Van Loan [25].

8g0(a) is the derivative of g (sometimes called the Jacobian) evaluated at a.
9The pth diagonal of a symmetric matrix consists of all the entries (i; j) with ji� jj = p.

10This form of matrix also arises when solving partial di�erential equations on rectangular grids.
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4.8 Conclusion

We have presented a framework for the broad problem of measuring spatially varying re-


ectance characteristics of complex surfaces. The process begins with a geometric model of

the surface, along with measurements of re
ected radiance under known lighting conditions.

So that the results can be represented using raster texture maps, we de�ne a number of

overlapping, parameterized texture patches that cover the surface. We then consider all the

pixels in all the photographs as measurements to which spatially varying BRDF parameters

must be �t.

If the BRDF model has no rapid directional variations, each pixel of each texture map

can be processed independently, leading to a simple, e�cient solution. We have demon-

strated this technique, using a Lambertian model, on complex objects with detailed tex-

tures. The results capture the textures well, allowing photorealistic rendering.

If the BRDF model includes a specular lobe, it no longer su�ces to consider each point

separately. This is because information about the specular lobe can only be observed from

near-specular con�gurations, and most surface points will not happen to fall within specular

highlights in enough images to provide the data needed to solve for the specular parameters

of the BRDF model. To solve this problem, we propose the introduction of a regularization

term that encourages smoothness across areas where parameters are underdetermined.

An extreme case of this idea is to assume that specular parameters are constant across

the surface while di�use parameters are variable. This leads to another quite practical

solution, which we have demonstrated on real data.

In the more general case, in which all p parameters vary across the surface, we have ex-

plained why it is not practical (or even possible for most objects) to solve for the complete

BRDF model across the entire surface. We have proposed a way of solving a regularized

system to �t the available data while interpolating smoothly where the solution is un-

derconstrained. Compared to previous techniques for handling spatially varying specular

re
ection, our proposed approach would provide a better-founded and more general way to

take advantage of the incomplete information that is available.
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Figure 4.11: The geometry of the rock scan alone, with no texture map.
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Figure 4.12: The texture patches on the rock model. The model has been rendered using
a checkerboard with a blue number and a yellow border for each of the texture maps to
illustrate the locations of the patches. Note that the checkerboards do not appear very
distorted, which demonstrates the low distortion of the texture embeddings.

Figure 4.13: Some representative photographs from the set of 16 used to compute texture
maps for the rock.
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Figure 4.14: The 42 texture maps computed for the rock model.
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Figure 4.15: A comparison between the textured rock model and the actual rock. Above
is a photograph of the rock, and below is a rendering of the model under similar lighting
conditions. The di�erence in color is due to the tungsten light source used to take the
photograph.
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Figure 4.16: The geometry of the squash scan alone, with no texture map.
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Figure 4.17: The texture patches on the squash model. The model has been rendered
using a checkerboard with a blue number and a yellow border for each of the texture maps
to illustrate the locations of the patches. Note that the checkerboards do not appear very
distorted, which demonstrates the low distortion of the texture embeddings.

Figure 4.18: Some representative photographs from the set of 24 used to compute texture
maps for the squash.
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Figure 4.19: The nine texture maps computed for the squash model.
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Figure 4.20: A comparison between the textured di�use squash model and the actual
object. Above is a photograph of the squash, and below is a rendering of the model under
similar lighting conditions. The di�erence in color is again due to the tungsten light source
used to take the photograph. Because we have only measured the di�use component, the
highlights are missing from the rendered image.
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Figure 4.21: The squash model with the �tted spatially uniform specular component.

p x p diagonal blocks

(nxp)
th diagonal

pth diagonal

Figure 4.22: The matrix structure of the linear subproblem at the core of the proposed
regularized re
ectance estimation system.
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Chapter 5

Image-based BRDF Measurement

In Chapter 4 we considered the problem of measuring an object's surface texture using

photographs. In order to allow for inhomogeneous surface re
ectance, we had to make

quite stringent assumptions about the form of the BRDF. In this chapter we will work

under the opposite circumstances: we will assume that the surface is homogeneous, but we

will make no assumptions at all about the form of the BRDF, other than that it is isotropic.

Our goal will be to measure the full BRDF in as much detail as possible.

5.1 Overview of Method

A straightforward device for measuring isotropic BRDFs is illustrated in Figure 5.1. A 
at

sample of the material to be measured is illuminated by a light source, and a detector mea-

sures the complete distribution of re
ected light by moving around the entire hemisphere.

In this way the complete scattering behavior for a particular angle of incidence is measured.

This process is repeated many times, moving the light source each time to measure a di�er-

ent incidence angle. In this way the whole BRDF is measured. We will refer to this device

as Device A. The light source only needs to change its elevation, from normal to grazing; its

azimuth can remain �xed because the BRDF is assumed to be isotropic. Because there are

three dimensions to the domain of an isotropic BRDF, there are three mechanical degrees

of freedom in Device A: two for the detector and one for the source.

Because the positions of the light source and detector are only relevant relative to the

plane of the surface, exactly the same results could be achieved using a rotating sample and

a �xed detector, as shown in Device B (Figure 5.2). There are still three degrees of freedom:

two for the sample and one for the source. The ability to change the sample's orientation

substitutes for the ability to change the absolute direction to the detector.

If the sample is curved, instead of 
at, every part of the sample's surface has a di�erent

orientation. If the sample curves su�ciently to include all the necessary orientations, we

73
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Light source

Detector

Sample

Figure 5.1: Device A for measuring BRDFs. The source moves to change the incident
angle, and the detector moves to change the exitant direction.
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Light source

Detector
Sample

Figure 5.2: Device B for measuring BRDFs. The source moves to change the incident
angle, and the sample tilts to change the exitant direction.
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can obtain the same measurements as Device B by measuring di�erent parts of the surface

instead of rotating the sample. This is the key observation for image-based BRDF measure-

ment. We can measure all parts of the surface at once by using a camera for the detector

(Figure 5.3). There are still three degrees of freedom: one for the light source and one for

each dimension of the camera's image.

The major advantages of this approach are speed and sampling density. Rather than

having to move the detector to each of hundreds of positions, pausing each time to make

a measurement, we can capture hundreds of thousands of samples in a single exposure

using a high-resolution image sensor. Only a single exposure is required for each light

source position. An attendant disadvantage is that it is no longer easy to capture the

full wavelength spectrum of the re
ected light. For computer graphics great detail in the

spectrum is normally not required, and we can gather enough information by measuring

sequentially through a small number of color separation �lters.

5.1.1 Sampling patterns

Collecting data in this way leads to very di�erent sampling patterns than we normally expect

from a BRDF measurement device. If we consider the set of BRDF con�gurations that is

measured by an image, we �nd that each image creates a curved sheet of measurements

in the BRDF's domain. In the absence of occlusion, the curvature of a smooth surface

creates a continuous function from image position to the domain of the BRDF, embedding

the image as a two-dimensional surface in that domain. The geometry of the surface, light

source, and camera dictates where that sheet falls and how the samples will be arranged on

it. This leads to challenges in understanding the form and arrangement of the sheets, and

in reconstructing BRDF values or regularly spaced samples from this irregularly structured

data.

A two-dimensional example is illustrative, both in understanding the technique and in

testing the implementation. If the object to be photographed (the test sample) is a cylin-

der, and we restrict our attention to a plane perpendicular to its axis and containing the

camera and light source (Figure 5.4), we can measure incidence-plane BRDFs, using one-

dimensional sheets to cover the two-dimensional domain. As can be seen in Figure 5.5,

the angle between the viewing and illumination directions remains approximately constant

within each image, to the extent that the camera and light source are far away compared to

the size of the cylinder. This leads to an approximately constant di�erence between �i and

�e, which means that the measurement sheets, plotted against �i and �e, will approximate

straight lines at 45� to the axes. Each measurement image leads to one sheet of measure-

ments, with its position determined by the relative positions of the camera and light source.

By moving the light source, we can run �i � �e through the full range from near zero, with
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Light source

Camera
Sample

Figure 5.3: An image-based BRDF measurement device. The source moves to change
the incident angle, and the sample's curvature allows all exitant directions to be measured
simultaneously.

�i �e
n

Figure 5.4: Measuring incidence-plane re
ection from a cylindrical sample. With the light
source, surface normal, and camera all in a plane, each image measures the BRDF for a
range of values of �i and �e.
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the light source next to the camera, to 180�, with the light source behind the sample. The

physical shape of the camera and light source limits the approach to retrore
ection,1 and

the size of the light source and camera aperture limits the approach to grazing re
ection in

the incidence plane. Figure 5.6 shows the sample sheets for an actual experiment using a

cylindrical sample; note that the sheets are very nearly 45� lines.

In the case of a full isotropic BRDF measurement, we substitute a sphere for the cylinder,

and we use the full two-dimensional image. With exactly the same sequence of light source

positions, we then obtain a series of two-dimensional sheets, which together �ll the three-

dimensional domain of an isotropic BRDF. The angle between the incident and exitant

directions is again nearly constant, but the geometric shape of the sheets depends on how

the BRDF's domain is parameterized. Normally it will not be as simple as the approximate

lines of Figure 5.6. We return to this issue in Section 5.6.

The following sections will describe the apparatus used to make our image-based BRDF

measurements, its use and calibration, and the issues involved in understanding and pro-

cessing the data that it produces. A detailed description of the procedure used to make

these measurements is given in Appendix F. We concentrate entirely on isotropic materials,

although the system can be extended to measure anisotropic BRDFs as well.

5.2 Prior Work

The BRDF is a function of �ve variables, if wavelength is included, although for isotropic

materials there are just four degrees of freedom. Sampling this high-dimensional space

sequentially is impractical, but measuring multiple points simultaneously can speed data

collection.

In a classical setup [45, 59, 65], the three or four angular dimensions are handled by

specialized mechanisms that position a light source and a detector at various directions

from a 
at sample of the material to be measured. The �nal dimension, that of wavelength,

is handled either with a broadband spectroradiometer that measures the entire spectrum

at once, or by multiple measurements varying the wavelength of a narrow-band source or

detector. Because three, four, or �ve dimensions must be sampled sequentially, measuring

re
ectance functions can be time-consuming, even with modern computer controls. Moving

the motor stages and measuring the re
ected light can take several seconds, and since

measurements are taken point by point, even a sparse sampling of the incident and exitant

hemispheres can take several hours.

1As is often practiced in re
ectance measurement, we could measure angles up to exact retrore-

ection by using an angled beam splitter to allow the source and camera to share the same beam
without physically colliding.
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More recently, techniques have been reported in the computer graphics literature to

reduce dimensionality in angle rather than in wavelength. These methods, like the method

presented in this chapter, use a two-dimensional detector|the image sensor of a digital

camera|to measure a two-dimensional range of angles simultaneously, leaving one or two

dimensions of angle and one dimension of wavelength to be sampled by sequential measure-

ments.

Ward [64] presents a device to measure the BRDF of anisotropic materials by using a

hemispherical half-silvered mirror to gather light scattered from a 
at sample into a CCD

camera with a �sh-eye lens. The camera thus captures the entire exitant hemisphere at

once for each illumination direction, leaving two degrees of freedom to handle mechanically.

This provides signi�cant time savings over the four degrees of freedom required by the

conventional approach. Ward's instrument is limited by its optics; the hemispherical mirror

only approximates the ideal ellipsoid, and vignetting limits the quality of measurements

near grazing exitance. The device integrates energy over the entire visible spectrum; it does

not measure variation in the BRDF with wavelength, although sequential measurements

through color �lters could be added.

Karner et al. [36] describe a system using an inexpensive CCD camera and a simple

incandescent lamp. In this case, the camera captures an image of a large 
at sample and a


at reference surface, which are illuminated symmetrically by the small light source. The

di�erent points on the samples have di�erent illumination and re
ection directions; because

of the symmetry of illumination, the BRDF values can be computed from the ratios between

corresponding pixels on the two samples. This method, like Ward's, handles two dimensions

of angle by simultaneous measurement, but the authors do not try to sample the entire

BRDF, because their goal is to �t a simple re
ectance model rather than to measure the

full BRDF. They measure wavelength dependence using the built-in color �lters of the CCD

camera.

Ikeuchi and Sato [34] present a system for estimating re
ectance model parameters using

a surface model from a range scanner and a single image from a video camera. In contrast

to the methods of Ward and Karner et al., they use a curved sample to capture a set of

directions spanning a large range of both incidence and exitance angles. Because their goal,

like that of Karner et al., is to �t a re
ectance model, they use a single image and make no

attempt to sample the BRDF exhaustively.

Sato et al. [54] describe a method to �t BRDF parameters from a sequence of images of

an arbitrarily shaped object under controlled illumination. They use the two dimensions of

the captured images to capture the spatial variation of BRDF across the surface, rather than

to sample angular parameters of a spatially uniform BRDF. The image sequence provides

samples along a one-dimensional path for each surface point; a simple re
ectance model
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is �t to these data. Again the goal is model �tting, so only a small portion of the BRDF

parameter space is measured.

Like these other image-based systems, the system presented in this chapter uses a camera

to sample a two-dimensional set of angles in a single measurement, so it shares their ad-

vantages in speed and sampling density over traditional approaches. Our method, however,

measures isotropic BRDFs very completely, so the data are useful for more than �tting low-

dimensional models. Our results can be used not only to render images, but also to validate

re
ectance models for particular materials, or to investigate BRDFs that do not conform

to existing models. We have also veri�ed the accuracy of our system more thoroughly than

previous reports of image-based methods.

5.3 Apparatus

Our photographic BRDF measurement technique requires a well-characterized camera, a

stable and uniform light source, and a means for measuring their positions. Also required

are curved samples of accurately known shape.

The system we used is shown in Figure 5.7. The main parts are the primary camera,

which takes the photographs from which the measurements are made, a light source, the

test sample, and the secondary camera, which is used to measure the position of the light

source.

The measurement of the light source position is a novel aspect of our technique. The

source was mounted rigidly to the secondary camera, and its position was found by �rst

determining the position and orientation (the pose) of that camera. Each measurement

exposure was made by opening the shutter of the primary camera, then triggering the

secondary camera during the exposure. The secondary camera triggered the 
ash, so we

obtained a calibration image directly correlated with the source position, acquired at exactly

the same time as the measurement image. A number of machine-readable targets with

known 3D positions were placed near the sample, so that each calibration image included

images of several targets. By analyzing these images, the poses of the secondary camera

were determined. With the light source rigidly attached to the camera, its position was

easily found for each exposure. The algorithms used to generate and recognize the targets,

establish their 3D positions, and determine the poses of the secondary camera are described

in Appendices B and C. The light source (a xenon 
ash) and the secondary camera, a

Kodak DCS420, are described in Appendix D.

Because this technique can locate the light source equally well at any location where

the secondary camera can see the targets, it gives us great freedom in placing the light

source. We chose to move the source manually from one position to the next, using a path
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marked on the 
oor as a guide to approximate placement. We used a path shaped like

a half-turn of a spiral (Figure 5.8 shows the actual path from a typical measurement) so

that the light source distance increased as the con�gurations approached grazing. This

automatically reduced the signal level for these very bright re
ections while increasing the

density of sheets in this fast-changing region of the BRDF.

5.3.1 The primary camera

The primary camera was a Photometrics PXL 1300L; it is described in Appendix D. It

remained �xed throughout the measurement process and made the actual measurements

of radiance re
ected from the test sample. Its overall sensitivity was adjusted, both by

adding and removing neutral density �lters from its optical path and by adjusting the lens

aperture, as appropriate to allow measurement of bright re
ections without saturation. If a

wavelength-dependent measurement was required, we made sequential exposures using color

separation �lters. We also used an infrared blocking �lter to eliminate unwanted invisible

light.

The physical setup of the primary camera and the related optics is diagrammed in

Figure 5.9 and shown photographed in Figure 5.10. The �lters themselves are described in

Appendix D. To prevent stray light from contaminating the signal, we enclosed the lens

and �lters in a black box with an opening in the front just large enough for the required

�eld of view.

5.3.2 The test samples

Our method requires accurate knowledge of the geometry of the sample's surface. In addi-

tion, to avoid shadowing, occlusion, and interre
ection, the sample should be convex; and

to provide a full range of BRDF samples, the surface should be smoothly curved in both

directions. Two approaches to obtaining the required geometry are possible: one could

begin with an arbitrary object and measure its shape using a range scanner, or one could

use an object manufactured to a speci�c shape. We adopted the latter approach, but the

�rst is equally viable and would require no modi�cations to the technique.

Our test samples consisted of cylinders and spheres; the cylinders were sections of alu-

minum tubing, with a nominal outside diameter of six inches. The spherical samples were

200 mm copper spheres.2 We placed them on a Cyberware MS motion platform (Ap-

pendix E) to provide accurate computer-controlled translation and rotation. We used this

2We estimated the cylinders to be within 0.5 mm of round and the spheres to be within 1 mm of
spherical. The spheres had small-scale 
aws near the pole that introduced some minor artifacts in
the data near grazing incident angles.
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equipment because it was already available in our laboratory and it made some calibra-

tion simpler, but such a device is by no means required for making image-based BRDF

measurements.

5.3.3 Calibration

In order to interpret a pixel value as a measurement of BRDF, the following information

must be known:

� The responsivity of the pixel sensors to scene radiance;

� The irradiance due to the light source at the relevant surface point;

� The geometric arrangement of the surface normal, the viewing direction, and the

illumination direction.

We undertook several steps to ensure that each of these items was well controlled. The

speci�c calibration processes for each camera and for the light source are described in

Appendix A.

As mentioned earlier, we calibrated the poses of the secondary camera using observed

positions of the calibration targets, in order to locate the light source. The focal length and

pose of the primary camera could have been found in the same way, but the arrangement of

the apparatus was such that very few calibration targets appeared in the primary camera's

�eld of view. To rectify this, we placed a temporary set of targets in the scene, measured

their 3D positions by photographing them with the secondary camera, then used those as

the known targets to calibrate the primary camera's pose and focal length.

We established the sample's horizontal position by centering it on the turntable (Ap-

pendix F). Because we did not measure the height of the sample above the table, we

computed it from the measured center of the sample's image in the primary camera. The

measured sample radius was less precise than the other measurements, so we made an ad-

justment to bring the target into exact agreement with its image in the primary camera.

The most important consideration for accuracy is that the silhouette edge of the sphere's

image agree with the model; whether it is brought into agreement by adjusting the focal

length or the sphere's radius makes an insigni�cant di�erence. Because it was easier, we

adjusted the focal length of the primary camera.

For the actual measurements, and after verifying that it would not introduce any sig-

ni�cant errors, we further altered the primary camera parameters so that the camera's

optical axis passed through the center of the test sample, in order to simplify subsequent

computations.
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5.4 Data Processing

The most important data that result from the measurement of a single BRDF are:

� A set of measurement images from the primary camera, one for each light source

position (three for each position if the color separation �lters were used), with a

record of the lens aperture and neutral density �lter used for each exposure.

� A set of light source calibration images from the secondary camera, one for each light

source position.

The basic steps to process these data are as follows.

1. Find the poses of the secondary camera. First, the calibration images are analyzed to

locate and identify all the visible and legible targets in each image. Then, the pose

estimation algorithm is used to compute the pose of the secondary camera at each

light source position from the observed target locations and the targets' previously

measured 3D positions. The only user intervention required in this step is to remove

any mistakenly recognized targets from the output of the target �nder; images with

such errors are automatically brought to the user's attention using a threshold on the

residual error in the pose estimation equations.

2. Locate the image of the test sample in the primary camera. The user identi�es several

points along the silhouette of the sample in one of the photographs, and these points

are used to �t either a circle, in the case of a spherical sample, or two parallel lines,

in the case of a cylindrical sample, which describe the exact position of the sample in

image coordinates.

3. Compute the BRDF samples. For many points in each image, trace the corresponding

ray from the camera, �nd its intersection with the test sample, and compute the

directions !i and !e and the surface normal n. Compute the relative radiance using the

calibration information about the primary camera, and compute the relative irradiance

from h!i;ni and the distance to the light source. The ratio of those numbers is a

measurement of fr(!i; !e).

The set of image points where the BRDF samples are computed in the last step can

be di�erent, depending on the pattern of samples desired for the output. The simplest

approach is to generate one BRDF sample for every pixel that falls within the image of

the test sample. In this way, the output samples correspond one for one with the physical

measurements made by the individual CCD elements. However, in some circumstances it is

helpful to have sets of samples with their locations constrained in some way; for instance,
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we may want to generate a set of samples for a �xed incidence or exitance direction in order

to make a traditional scattering diagram.

Let us take the example of generating a full set of samples for a spherical test sample

and a �xed incidence direction �0i . In general, none of the pixels will have �i = �0i exactly.

However, if we consider each image as a representation of a continuous 2D function and

allow ourselves to reconstruct values at arbitrary positions within the image, we can use

sample points that do have �i = �0i . Such image points can be found by projecting points

on the sample surface that have the desired incidence angle into the camera image. These

points are all on a circle with its center facing the light source; this circle can easily be

computed, and projecting a sequence of regularly spaced points along that circle (only the

ones visible to the primary camera, of course) into the image gives us the set of sample

points we seek. Repeating this process for every image gives a series of rings or partial

rings of samples, each corresponding to one image, that together cover the whole exitant

hemisphere for �i = �0i . These rings are, in fact, the intersections of the sample sheets with

the set �i = �0i . An example for an actual data set can be seen in Figure 5.11; Figure 5.12

shows the rings more clearly, on the projected exitant hemisphere.

5.5 Results

We have used the system described above to measure the full isotropic BRDF of three

materials, shown photographed in Figure 5.13. In addition, two materials were measured

in the incidence plane only. Flat samples of some of the materials were also measured

independently using a goniore
ectometer that was designed and veri�ed for accuracy within

5%. We validated the image-based measurements both by verifying reciprocity and by

comparing the data from the two independent measurement systems. The new method

gives results comparable in accuracy to the goniore
ectometer: consistency is excellent out

to 75� incidence (or exitance) and reasonable out to about 85�.

5.5.1 Incidence plane measurement

We measured two materials in the incidence plane only, using a cylindrical sample. One

was a gray primer (Krylon sandable primer #1318 \all-purpose gray"), which was sprayed

directly onto the aluminum substrate. The other was an ordinary o�ce paper (Xerox

2400DP), which was wrapped tightly around the same cylinder, using several layers to

avoid any possible substrate e�ects.

The resulting incidence-plane measurements are samples of a function of two variables:

fr((�i; 0); (�e; 0)). The whole dataset can be presented as a unit by plotting the measured

BRDF as a height �eld over the (�i; �e) domain, as shown for the o�ce paper in Figures 5.14
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and 5.15. Each curve in these plots represents the sheet of measurements from a single

image; in total there are approximately 4000 points. Even though the paper appears fairly

di�use under casual inspection, noticeable variation can be seen. The constant BRDF of

a purely Lambertian material would lead to an entirely 
at graph. This surface exhibits

directional di�use re
ection, with a very broad peak along the specular locus (points for

which �i = ��e); for this material the specularity takes the form more of a fold or ridge

than a distinct lobe (compare Figure 5.14 and Figure 5.18).

The principle of reciprocity requires this graph to be symmetric across the specular locus;

that it appears to have this symmetry is a �rst indication that the data are reasonable. To

test this symmetry more strenuously, we plotted perpendicular slices of this graph: the

data for �xed �i against the data for the same �xed value of �e.
3 The resulting plots for

three angles are shown in Figure 5.16. These curves agree closely out to about 85�. For an

objective error measure, we computed the RMS relative error4 between the curves, which

was 1.5% over all data out to 75� and 6.0% when all points to 85� were included.

The second test on the accuracy of our data was a comparison against independent

measurements of the same material. We made these measurements using a traditional

goniore
ectometer, removing the stack of paper from the cylinder and clamping it against

a 
at plate in the goniore
ectometer's sample holder. We made measurements for �xed

incidence and exitance angles in 15 degree steps, with approximately 40 samples along the

variable axis for each �xed angle. The image-based data for three �xed angles are plotted

against the corresponding measurements in Figure 5.17. The RMS discrepancies between

these curves are 2.8% to 75� and 3.7% to 85�.

The same data was also measured for the gray primer; the corresponding plots are shown

in Figures 5.18{5.20. Note that the primer exhibits a stronger specular re
ection, with a

more distinct, rounded specular lobe. The error measures for this material are summarized

in Table 5.1.

5.5.2 Full isotropic measurements

We measured three paints for full isotropic BRDFs, using spherical samples. The three

paints were the same gray primer described in the preceding section, a blue enamel (Krylon

latex enamel #7205 \true blue"), and a red metallic automotive lacquer (Dupli-color #T-

345 \garnet red"). To avoid problems with extremely high dynamic range, we coated the

3Because the primary camera is stationary, the data for �xed �e come from the same point in
each measurement image. However, the light source moves to arbitrary angles, so the values for
�xed �i are to be found at a di�erent point in each image. In both cases, sampling at prede�ned
angles requires reconstruction of a continuous image. For these plots we used linear interpolation.

4We computed the RMS average of the relative error between the original data points and the
interpolated reciprocal data points, where the relative error between xi and yi is 2(xi�yi)=(xi+yi).
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Figure 5.5: When the sample size is small relative to the distances to the camera and
light source, the angle between the source and camera directions remains nearly constant
for each image.

Table 5.1: Summary of error measures for several accuracy tests.

Test RMS error to 75� RMS error to 85�

Paper reciprocity 1.5% 6.0%

Paper against goniore
ectometer 2.8% 3.7%

Primer reciprocity 2.5% 7.8%
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Figure 5.6: The (�i; �e) locations of the sheets from the paper measurements. Two of the
actual measurement images are shown below, with the locations of several samples marked
in each. The locations of the corresponding BRDF measurements are indicated by round
dots in the graph above. The camera positions for these images are labeled in Figure 5.8.
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Figure 5.7: The experimental setup for image-based BRDF measurement.
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Figure 5.8: The camera path for an actual measurement.
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Figure 5.9: The con�guration of �lters used in front of the primary camera.
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Figure 5.10: The experimental setup for image-based BRDF measurement.
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Figure 5.11: The BRDF samples generated by image-based measurement
of the blue paint, corresponding to the 45� scattering diagram shown in
Figure 5.24.

two colored paints, which had glossy �nishes, with a gloss-reducing �nish (Plasti-kote #33

\glass frosting spray"). We used the color separation �lters when measuring the colored

paints.

The data for each color channel of each measurement comprise approximately 1.5 million

samples; the data corresponding to a single exitance angle for the blue channel of the blue

paint are plotted in Figure 5.11.5 We present the results of these measurements by showing

3D scattering diagrams produced using the reconstruction technique of Section 5.7. In

these diagrams, the �rst parameter of fr (either the incidence or exitance direction; by

reciprocity they are equivalent) is held at a �xed value !0, and the distance from the origin

to the displayed surface in the direction ! is equal to the reconstructed value of fr(!0; !).

Figure 5.21 shows the scattering diagrams of the primer for six incidence angles. Note how

the surface is predominantly di�use for normal incidence, but becomes strongly directional

as the incidence angle increases. As expected, the primer shows some retrore
ection, and

its forward scattering lobe becomes larger and more o�-specular as the angle of incidence

increases.

Figures 5.22{5.24 and Figures 5.25{5.27 show the scattering diagrams for the three color

channels of the red and blue paints for six di�erent incidence angles. These diagrams reveal

a distinct di�erence between the behaviors of these two paints. The blue paint exhibits

5These points are not a subset of the actual measurements; see Section 5.4.
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Figure 5.12: The sampling pattern from Figure 5.11 projected down to the disc. Each point
is the projection onto the unit disc of 3D unit vector that represents !e for that sample
point. Each circle corresponds to a single measurement image, and in this projection the
shape of the rings is more evident than it is in Figure 5.11.

Figure 5.13: Photographs of the actual test samples used.
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Figure 5.14: Incidence plane measurements of the BRDF of paper plotted against incidence
and exitance angles, on a linear scale.
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Figure 5.15: Incidence plane measurements of the BRDF of paper plotted against incidence
and exitance angles, on a logarithmic scale.

0 0.2 0.4 0.6 0.8

0˚30˚ –30˚ –60˚

  = 0˚

  = 30˚

  = 60˚

fr

�1

�1

�1

�2

Figure 5.16: Reciprocity comparison. BRDF measurements of white paper
are plotted for �xed exitance (solid lines) and �xed incidence (dashed lines)
at � = 0�, 30�, and 60�.
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Figure 5.17: Goniore
ectometer comparison for o�ce paper. The image-
based BRDF measurements (solid lines) are plotted against goniore
ectome-
ter measurements of the same material (dashed lines) at � = 0�, 30�, and
60�.

specularity that is mostly uncolored, as shown by the nearly constant size of its specular

lobe. The blue color comes strictly from the di�use component: comparing the scattering

diagrams clearly shows a large di�use component in the blue channel that becomes much

smaller in the other two channels. The red paint, on the other hand, has almost no di�use

component. Its color comes from a broad directional peak, visible in the red channel, and

its dimmer white highlight comes from a narrower, non-wavelength-dependent peak, visible

in the green and blue channels. Both paints show a distinct toe, or increase in forward

scattering when one angle nears grazing, which we conjecture may be due to scattering in

the layer created by the gloss-reducing spray.

We measured the red and blue paints with the goniore
ectometer to validate our results

over the entire hemisphere. Figures 5.28 and 5.29 show the goniore
ectometer measure-

ments alongside the image-based measurements from Figures 5.22{5.27. The similarity of

these plots indicates that our technique has successfully captured the BRDF.

5.6 Mapping the BRDF Domain to 3-space

Once we have measured a surface, we have a large collection of BRDF samples, each with

a di�erent con�guration of illumination and viewing directions. Each such con�guration is

a point in the BRDF's domain, and we can think of our measurements as being scattered

through a three-dimensional space. Furthermore, as we observed at the start of this chapter,
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Figure 5.18: Incidence plane BRDF measurements for the gray primer plotted against
incidence and exitance angles, on a linear scale.
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Figure 5.19: Incidence plane BRDF measurements for the gray primer plotted against
incidence and exitance angles, on a logarithmic scale.
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Figure 5.20: Reciprocity comparison for gray primer. BRDF measurements of the primer
are plotted for �xed exitance (solid lines) and �xed incidence (dashed lines) at � = 0�, 30�,
and 60�. The plot is shown at two scales so that all three curves can be seen clearly.
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Figure 5.21: Resampled scattering diagrams of the BRDF measurements of the gray
primer at various incidence angles. The outer ring corresponds to a BRDF value of 1=�.
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Figure 5.22: Resampled scattering diagrams of the BRDF measurements of the blue
enamel paint through the red �lter. The outer ring corresponds to a BRDF value of 1=2�.
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Figure 5.23: Resampled scattering diagrams of the BRDF measurements of the blue
enamel paint through the green �lter. The outer ring corresponds to a BRDF value of
1=2�.
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Figure 5.24: Resampled scattering diagrams of the BRDF measurements of the blue
enamel paint through the blue �lter. The outer ring corresponds to a BRDF value of
1=2�.
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Figure 5.25: Resampled scattering diagrams of the BRDF measurements of the red metal-
lic lacquer paint through the red �lter. The outer ring corresponds to a BRDF value of
1=2�.
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Figure 5.26: Resampled scattering diagrams of the BRDF measurements of the red metal-
lic lacquer paint through the green �lter. The outer ring corresponds to a BRDF value of
1=2�.
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Figure 5.27: Resampled scattering diagrams of the BRDF measurements of the red metal-
lic lacquer paint through the blue �lter. The outer ring corresponds to a BRDF value of
1=2�.
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Figure 5.28: The image-based measurements of the blue paint for an angle of incidence of
45� (at left; note that these plots are repeated from Figures 5.22{5.24) with the correspond-
ing measurements from the goniore
ectometer (at right). The goniore
ectometer data have
been triangulated directly from the sample points, while the image-based data, which do
not come in sets of �xed �, have been resampled.
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Figure 5.29: The image-based measurements of the red paint for an angle of incidence of
45� (at left; note that these plots are repeated from Figures 5.25{5.27) with the correspond-
ing measurements from the goniore
ectometer (at right). The goniore
ectometer data have
been triangulated directly from the sample points, while the image-based data, which do
not come in sets of �xed �, have been resampled.
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these points are arranged on densely sampled sheets. In order to conveniently represent the

sample positions, either to visualize them using 3D rendering or to perform resampling

computations, we would like to have a coordinate system that organizes the domain of an

isotropic BRDF in a volume of ordinary 3D space in a way that is easily understood, for

visualization, or computationally e�cient, for resampling.

To state the problem in more speci�c terms, we seek a function  : 
� 
 ! IR3 with

the following properties:

1. Continuity. To avoid introducing artifacts into images computed using our coordi-

nates,  must be C2 continuous.

2. Bijectivity. Two con�gurations should map to the same point if and only if they

are required to have the same BRDF value. In particular, rotating a con�guration

about the normal or interchanging the two directions should leave the 3D coordinate

unchanged.6 Bilateral symmetry could also be included in this property.

For visualization, it is acceptable or even desirable for reciprocal con�gurations to be

considered di�erent, since it may aid in understanding some aspects of the sampling

pattern. However, reciprocity should map to an obvious symmetry; for example,

reciprocal points might map to points that are symmetric across a plane.

In the following sections, we will consider three possibilities for  : one very simple but


awed, one useful for visualization, and one especially suited to resampling the data from

our particular BRDF measurement system. For all three mappings, it will be convenient

to use cylindrical coordinates to represent IR3; we will adopt the convention that (r; �; z)c

corresponds to the Cartesian point (r cos�; r sin�; z) (Figure 5.30). Throughout this section

(�i; �i) will be the spherical coordinates of !i and (�e; �e) will be the spherical coordinates

of !e.

5.6.1 A simple cylindrical mapping

If we account for isotropy by keeping only the di�erence of �i and �e and map directly to

cylindrical coordinates, we have the following candidate for  :

 1(!i; !e) = (2�i=�; �e � �i; 2�e=�)c: (5.1)

Here are some characteristics of  1:

� The set of all con�gurations that share a particular value of �e (an incident hemisphere)

maps to a unit disc parallel to the x-y plane. Normal-exitance con�gurations map to

the plane z = 0; grazing-exitance con�gurations map to z = 1.

6By using the term bijective, we are really calling  a function on (
�
) = �i or (
� 
) =(�r

[ �i), rather than 
�
.
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� An exitant hemisphere maps to a cylinder centered on the z axis. Since a cylinder

is topologically unlike a hemisphere, this is an indication that  1 lacks some of the

desired properties. Con�gurations with normal incidence map to the z axis, and

grazing-incidence con�gurations map to the cylinder r = 1.

� The set of con�gurations for which �i = �e maps to a 90
� unit cone with its apex at

the origin and its base on the plane z = 1. The ideal specular con�gurations, for which

�i = �e and �� = 180�, are along the intersection of that cone with the plane y = 0,

which is a line segment from the origin to the point (�1; 0; 1). The retrore
ective

con�gurations, for which �i = �e and �� = 0, are along a similar segment from the

origin to (1; 0; 1) (Figure 5.31).

How does the symmetry of reciprocity appear after it has undergone this mapping? The

relationship (!i; !e) $ (!e; !i) becomes (r; �; z)c $ (z;��; r)c. On the cone r = z, this is

simply a re
ection across the plane y = 0; and if we restrict our attention to the square

for which �� = 0, the re
ection is across the line z = r. The normal-exitance set, the disc

at z = 0, is symmetric with the normal-incidence set, the z axis; and the grazing-exitance

set, the disc at z = 1, is symmetric with the grazing-incidence set, the cylinder at r = 1.

The symmetry on the entire space may be described as a re
ection across the cone z = r

followed by a re
ection across the plane y = 0. If we consider both bilateral symmetry and

reciprocity, we can think of these two symmetries independently: a simple bilateral one and

a re
ection through a cone.

The mapping  1 fails in both bijectivity and continuity. It is not bijective because the

some sets of con�gurations that are a single point as far as isotropic BRDF is concerned

do not map to single points. For instance, a set of con�gurations for which �i = 0 and

�e is �xed can have only a single BRDF value, since all such con�gurations are equivalent

under rotation about the surface normal. However,  1 maps such sets to circles on the disc

z = 0. It is also discontinuous, because points near �i = 0 are mapped to far-apart points

around that circle. This is despite the fact that  1 is obviously a continuous function of

�i, �e, �i, and �e. The mapping from the hemisphere to spherical coordinates is what is

discontinuous.

5.6.2 A mapping for visualization

The continuity and bijectivity faults of  1 can be remedied by the following mapping:

 2(!i; !e) = (sin �i sin �e;��; cos �i � cos �e)c: (5.2)

Under this mapping, the images of normal-incidence and -exitance con�gurations do not

depend on ��, as they should not under anisotropy. This eliminates the problems with

continuity and bijectivity that we saw with  1.



110

The geometric relationship between the ranges of  1 and  2 is illustrated in Figure 5.32.

Reciprocity and bilateral symmetry in this case are re
ections across the x-y and y-z planes.

The loci of normal incidence, normal exitance, specular re
ection, and retrore
ection form

a cross in the y-z plane (Figure 5.33). The grazing con�gurations are at the surface of the

sphere.

The loci of con�gurations for �xed incidence or exitance angles are no longer discs

under  2; they are hemi-ellipsoids. For instance, look at the set of con�gurations for which

�i = �0i ; the image of any point in this set has the form (a sin �; �; b + cos �) for the �xed

values a = sin �0i and b = � cos �0i . These points may easily be recognized as lying on an

ellipsoid with principal radii of 1, sin �0i , and sin �0i and center at (0; 0;� cos �0i ). In fact,

since � > 0, they all lie on the upper hemi-ellipsoid. This hemi-ellipsoid is a hemisphere

when �0i = 90�, and as �0i approaches zero it becomes increasingly narrow until it collapses

to a line at �0i = 0.

Visualizing con�gurations as points within the spherical volume de�ned by  2 allows

con�gurations to be identi�ed as having one or both angles near normal or grazing, displays

nearness to specularity or retrore
ection, and allows bilaterally symmetric or reciprocal

con�gurations to be identi�ed easily.

5.6.3 A mapping for resampling

The function  2 has desirable properties for visualization, but the measurements from

our image-based BRDF measurement technique come on sheets with near-constant h!i; !ei,
which do not map to any particularly simple surfaces under  2. Since the density of samples

is drastically di�erent along and across the sheets, it is desirable to be able to �lter the

points with an anisotropic kernel,7 an operation that can be made vastly more e�cient if

the sampling sheets coincide with the coordinate planes. Also, it is desirable to be able to

reconstruct a BRDF using reciprocal points interchangeably to in e�ect double the sampling

density. To this end, we present a third mapping,  3:

 3(!i; !e) = (sin �i sin �e;��; cos �i cos �e)c: (5.3)

This mapping di�ers from  2 only in the z coordinate, but it has the remarkable property

that loci of con�gurations with constant h!i; !ei become parallel planes, which can easily be
rotated to coincide with the coordinate planes. To see that this is true, consider the unit vec-

tors !i and !e in Cartesian coordinates. Assuming without loss of generality that �i = 0, the

coordinates of the two vectors are (sin �i; 0; cos �i) and (cos�� sin �e; sin�� sin �e; cos �e).

The inner product of these vectors is cos�� sin �i sin �e + cos �i cos �e, which is the sum of

7The anisotropy of reconstruction kernels should not be confused with the anisotropy of BRDFs.
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Figure 5.32: The relationship between  1 and  2. The �rst and last illustrations cor-
respond to Figures 5.31 and 5.33; the intermediate steps show how a planar slice of the
cylinder can be deformed, in the plane, into a corresponding planar slice of the sphere.
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Figure 5.33: The sphere corresponding to the mapping  2.
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Figure 5.34: The cone corresponding to the mapping  3.

the y and z coordinates of  3(!i; !e). Thus if h!i; !ei = c then (!i; !e) maps under  3 to

a point on the plane y + z = c.

Figure 5.34 indicates the images of several interesting sets under  3. The image of the

entire domain is a cone. It is obvious from Equation 5.3 that  3 is invariant with respect

to exchanging !i and !e, so reciprocal con�gurations map to the same point. Again, the

normal-incidence or -exitance con�gurations are on the z axis, but this time the grazing

con�gurations are on the z = 0 plane, and the con�gurations with �i = �e, including the

specular and retrore
ective ones, are on the surface of the cone. Loci of �xed incidence and

exitance coincide, and they are hemi-ellipsoids tangent to the surface of the cone.

5.7 BRDF Resampling

In order to make use of the measured BRDF samples, it is necessary to evaluate fr(!i; !e) at

arbitrary points, not just at the sample points where the measurements took place. Because

the samples are scattered arbitrarily over a 3D domain, this is a challenging reconstruction

problem. In addition, the sampling density is anisotropic, because the spacing of the sample

sheets is much sparser than the spacing of the samples within each sheet. To perform this

reconstruction, we use a local polynomial regression method on the 3D domain de�ned by
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 3 in Section 5.6.3.

5.7.1 Local polynomial regression

The idea of local polynomial regression [19] is best introduced in one dimension. Consider

a set of m irregularly spaced, noisy samples (xi; yi) of a function f , as shown in Figure 5.35.

We want to de�ne a continuous function ~f that estimates what f might have been. One way

to do this would be to de�ne ~f(x0) to be the average of all yi's corresponding to xi's within

a certain interval around x0, yielding the function shown in part (a) of the �gure. This

technique could be called local constant regression, because we are performing regression,

or data �tting, by using the value of the constant function that best �ts the data in a

local neighborhood of the reconstruction point. To obtain a continuous function, we can

replace the simple average by a weighted average, with a weight that drops o� with distance

according to a kernel function h. This gives the result shown in part (b) of the �gure. Using

the same kernel, we can obtain a better �t with less tendency to reduce the height of peaks

by �tting a line to nearby data instead of a constant function (part [c]), or, in general, a

polynomial, as shown in part (d).

The basic computation underlying local polynomial regression is �tting a polynomial to

the samples near x0, using the weights given by h(xi � x0). This can be done using a least

squares system. For example, we can �t the quadratic function

p(x) = a2x
2 + a1x+ a0 (5.4)

by �nding the values of the parameters ai that make p(xi � x0) best approximate yi for
nearby xi. Formally, we want to minimizeX

i

[h(xi � x0)(p(xi � x0)� yi)]2 : (5.5)

If we de�ne the m by 3 matrix M to have entries mij = h(xi � x0)(xi � x0)j�1, then this

sum can be written as

kMa� yk; (5.6)

where a = [a0 a1 a2]
T and y = [y1 : : : ym]

T . This is a standard matrix problem that can be

solved in time O(n2m), where n is the number of coe�cients in the polynomial, 3 for the

1D quadratic case. The entry a0 is then ~f(x0).

The same idea can be applied in higher dimensional domains: for example, in the 3D

case, local quadratic regression involves �tting the 10 coe�cients of a quadratic in x, y, and

z to the (at least 10, we hope) points that fall inside the support of the kernel. In three

dimensions, the kernel can be chosen to be the same size on all three axes (a spherical or
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(a)

(c)

(b)

(d)

Figure 5.35: Reconstructing a 1D function from irregular samples in four di�erent ways.
The kernel function h used in each case is plotted (on an unrelated vertical scale) at the
bottom of the plot. The gray tone of each sample point indicates the value of h at that
point, from white at zero to black at one.
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isotropic kernel) or to have di�erent extents on di�erent axes (an elliptical or anisotropic

kernel). If the desired elliptical kernel has the same shape and orientation everywhere, it

can be implemented easily and e�ciently by applying a linear transformation to the (xi; yi)

and to x0, then using a spherical kernel.

5.7.2 Reconstructing using  3

If we transform our data points by  3 before applying local polynomial regression, the sheets

will lie approximately on parallel planes. This means we can bridge the gaps between

the sheets without over-smoothing within the sheets by using an elliptical kernel that is

elongated in the direction perpendicular to the sheets.

Very roughly, if there are 300 pixels across a full sheet, mapping to at most two units

across the base of  3's cone, and 30 sheets, mapping to
p
2 units on a 45� diagonal through

the cone, we might expect to use a kernel with proportions of about 7:1:1. We chose the

kernel size by following this proportion and making the kernel as small as possible without

introducing points where there were too few samples within the kernel to make a reasonable

estimate (such points show up as points where there are too few rows to solve the system,

or as large spikes in ~f if enough points fall within the kernel but they are nearly coplanar).

To produce the 3D scattering diagrams presented in Section 5.5, we used a simple

adaptive subdivision scheme, beginning by evaluating fr at the vertices of a tessellated

hemisphere and repeatedly subdividing triangles with high curvature until all triangles

were brought below a speci�ed tolerance or a subdivision limit was reached.

This reconstruction technique, while it produces excellent results, is not well suited

for direct use in a renderer, because of the large amount of memory required to store the

samples and the high computational cost of �tting a polynomial for each BRDF evaluation.

5.8 Conclusion

This chapter has explained a simple technique that can measure the BRDFs of many mate-

rials and has described our implementation of the technique. We used only general-purpose

imaging devices, but we achieved accuracy rivaling that of a specialized goniore
ectometer

while measuring with greater speed and resolution than is normally possible. Our system

measured datasets of roughly 1.5 million samples, and the resulting data were consistent

and agreed closely with independent measurements.

The one major limitation of image-based BRDF measurement is that it can only measure

materials that can be obtained in curved, homogeneous samples. Furthermore, for the

measurement of full BRDF outside the incidence plane, we require samples with curvature

along both axes. In practice, this limits us to homogeneous materials or coatings that
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can be sprayed or otherwise applied to a curved surface, or, in the case of incidence-plane

measurements where we can use a cylindrical sample, materials that come in uniform,


exible sheets. While this limitation does exclude many surfaces, it includes many very

important surfaces: paints and other coatings may be conveniently measured over the full

BRDF domain, and the whole spectrum of paper and cloth may be measured in the incidence

plane.

Though not an inverse problem in the traditional sense, computing a BRDF from images

is very much a rendering task in reverse, requiring many of the algorithms and computations

familiar from forward rendering. Ray tracing is used to �nd the surface con�guration

corresponding to each pixel; integration over the light source, camera aperture, and surface

area de�nes the BRDF sampling; and interre
ection is a factor for non-convex scenes.

Because it is impossible to control the pattern of samples that is measured, this method

brings up interesting questions of how to understand complex sets in the BRDF's parameter

space, and how to perform computations using them. We have described new ways of re-

mapping the domain of an isotropic BRDF to aid in understanding the distribution of sample

positions. We have also presented a novel mapping that puts the seemingly irregular sample

pattern into a very convenient form that allows for much more e�cient and high-�delity

resampling operations than would otherwise be possible.

5.8.1 Future work

There are a number of practical improvements and extensions that could be made to our

method, both in the direction of increased measurement quality and in the direction of

increased simplicity and decreased equipment cost.

We have demonstrated only measurements of isotropic materials. For the incidence

plane, anisotropic materials may be measured using the system as already described, and

the angle between the surface grain and the incidence plane may be varied by rotating the

sample on the cylinder. To measure anisotropy on a spherical sample, the �rst requirement

would be a spherical sample with a uniform anisotropic BRDF and known grain direction

everywhere. One example of such a surface would be a metal sphere �nished on a lathe

with tool angle, speed, and feed rate relative to the surface maintained constant across the

surface. If there is no requirement for internal checks on the data, only one eighth of the

sphere's surface needs to be used for each measurement, so not all of the surface needs to

be �nished properly. The fourth degree of freedom in the measurement would then come

from rotating the sample about an axis through its equator.

BRDFs of glossy surfaces have extremely high dynamic range, making them challenging

to measure with any instrument. We applied a low-gloss �nish to the normally glossy

paints we measured, reducing the dynamic range to easily managed levels, but it should
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be possible to measure glossy surfaces by extending the dynamic range of the sensor using

multiple exposure techniques. The �nite source and detector solid angles would no longer

be negligible in such a measurement, and they would have to be taken into account. The

achievable dynamic range in images would be limited by 
are in the primary camera optics

and in the primary camera itself.

The measurements we have made with our system are already more than adequate for

most purposes, so another interesting line of inquiry is how to reduce the cost or mea-

surement time even further. The only signi�cant costs in the system are the two digital

cameras, and less expensive cameras could be substituted for either. The secondary camera,

in particular, is a tool that is rapidly becoming a consumer electronics item, and a camera

costing one tenth as much as the DCS 420 could easily be substituted today.

Reducing the cost of the primary camera must be done with care, since accurate and

repeatable radiometric calibration is required. A camera without cooling would be much

cheaper but would produce more noise, and a CCD array without the sophisticated anti-

blooming measures used in the PXL camera's array would limit our ability to make up

for that noise by extending the dynamic range with multiple exposures. However, if some

additional noise and a reduced maximum dynamic range can be accepted, there is no reason

the primary camera need cost more than one tenth what the PXL system cost.

The 
exibility of this system could be increased by removing the need for precisely

shaped samples, allowing pre-existing objects to be measured. Any convex surface that can

be measured accurately can be used without changing the system, and a 3D range scanner

is an obvious candidate for this measurement task. However, surfaces with truly uniform

BRDFs that are not painted surfaces are rare, so a description of a pre-existing surface's

BRDF will almost always require a spatially varying BRDF. A system that could measure

spatially varying, nontrivial BRDFs on complex surfaces would build on the topics in this

chapter and the previous one, and would be an invaluable tool in model acquisition.



Chapter 6

Conclusion

Work on three problems of inverse rendering has been described. Each uses the mathemat-

ical foundations of physically realistic rendering to solve problems in which the input is a

photograph or photographs and the output is part of the scene description.

The �rst problem, inverse lighting, assumes knowledge of geometry, re
ectance, and

the recorded photograph and solves for the lighting in the scene. We have presented a

formulation of the inverse lighting problem and a solution technique using a regularized

linear least-squares system. This method has been demonstrated using both synthetic and

measured input data, including photographs of human faces. We have also shown the results

of a technique called re-lighting that makes use of the inverse lighting solutions to modify

the lighting in the original photograph.

The second two inverse rendering problems solve for unknown re
ectance, given known

geometry and lighting. Photographic texture measurement concentrates on capturing the

spatial variation in an object's re
ectance. In our work, the geometric information came

from scanned 3D models of real objects, and the image information came from multiple pho-

tographs with known lighting and camera characteristics. We have demonstrated software

that uses this input to construct accurate, high-resolution textures suitable for physically

realistic rendering. We have shown results both from synthetic data and from two complex

natural objects with detailed surface textures.

The �nal project, image-based BRDF measurement, takes the opposite approach to

re
ectance measurement, concentrating on directional rather than spatial variation. In this

case, we begin with simple, known geometry (spheres and cylinders) and spatially uniform

re
ectance, and we measure the full BRDF of the surface. The measurements are made by

taking many photographs of an object with a light source in di�erent positions, and we have

demonstrated how these images can be made into high-quality BRDF measurements. We

have presented the results of measuring several paints and one type of paper and have shown

that the data have accuracy rivaling that of custom-built dedicated instruments. Because
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of our image-based approach and our novel light source positioning technique, our method

requires only general-purpose equipment and is suitable for use outside of specialized optics

laboratories. The cost of the apparatus is also much lower than the cost of a specialized

goniore
ectometer. In addition, our method enjoys a major speed advantage: given an

optimized setup, this technique could easily be used to build a system that measures orders

of magnitude more points than present systems in orders of magnitude less time, when the

wavelength spectrum of the BRDF does not need to be measured in detail.

The investigation of these three problems in inverse rendering has raised many new

questions even as it has answered others. In Chapter 3, we demonstrated the ability to

infer plausible lighting from photographs. This shows that inverse lighting is possible for

some models; clearly it is impossible for others, such as a planar surface. What can be said

about which models and which BRDFs lead to reliable, stable inverse lighting solutions? In

the presence of shadows and interre
ections, this is a complex, but fundamental, issue.

In Chapter 4, we showed how high resolution texture maps can be assembled for objects

with very complex geometry. We have also investigated ways to construct the same types

of texture maps for surfaces with non-trivial BRDFs. How does interre
ection a�ect the

results? With interre
ection, how does the complexity of the problem increase as we allow a

BRDF to approach mirror-like behavior? Here we see the di�cult-to-constrain long-distance

interactions that make rendering such a di�cult problem.

In Chapter 5, we found that surprising accuracy can be obtained from a simple camera-

based measurement system. Clearly, this can become an important measurement technique

for the materials to which it is applicable. Can it be made to apply outside the constrained

laboratory setting in which it has produced these results? Could we measure BRDFs under

uncontrolled illumination?

Chapters 4 and 5 are, as we have pointed out, addressing two aspects of the same

problem. To produce the models best suited for physically realistic rendering, we need

a tool that can capture all characteristics of an object that have an important e�ect on

rendered images. This goal lies somewhere between the achievements of our two systems.

The resolution and generality of our BRDF measurement system neither can be nor need be

obtained independently at every point, but for realism and especially for physical accuracy

we must robustly account for the full BRDF. To combine these two systems' strengths is

an important challenge in the e�ort to characterize objects for rendering.



Appendix A

Camera Calibration

The calibration of cameras for measurement breaks down into two parts: geometric cali-

bration, which establishes the relationship between image points and rays in 3-space, and

radiometric calibration, which establishes the relationship between pixel values and radiance

in the scene.

A.1 Geometric Calibration

The two parts of geometric calibration are �nding the camera's pose, or its location and

orientation, called the external parameters, and �nding all the characteristics of the camera

itself, the internal parameters.

Cameras are commonly described by the pinhole perspective model, with deviations

from that ideal behavior modeled as geometric lens distortions [22, 21, 20, 60]. According

to that model (Figure A.1), a point x in 3D space is imaged on the image plane P of the

camera at the point y that is collinear with x and the camera's center of projection, c. The

image that we read out of the camera is measured from a rectangle R on the image plane.

We describe cameras starting with a coordinate frame based at c, with its w axis per-

pendicular to, and pointing towards, P and its u and v axes parallel to the edges of R. This

coordinate frame, with its six degrees of freedom, comprises the external parameters of the

camera. For a sensor of given dimensions, the internal parameters are the w coordinate of

the image plane, called the principal distance, and the position of the image rectangle. The

position of the image rectangle is speci�ed by giving the location (pu; pv) of the principal

point, the foot of the perpendicular from c to P , in the coordinates of the image. Thus

a pinhole perspective camera has in total nine degrees of freedom, for a particular sensor

size.1

1Note that the pinhole model ignores the orientation of the lens, so e�ects due to the lens,
such as o�-axis irradiance fallo�, need not be centered at the principal point if the lens axis is not
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Figure A.1: The pinhole camera model.

With the high-quality lenses and narrow �elds of view that we used, we found it un-

necessary to include geometric distortions in the camera model, so we used the pinhole

perspective model directly.

To measure camera parameters, we used correspondences between 3D points at known

locations and their projections in the image. In the earlier work described in Chapter 4,

we used a box with grid targets on its surfaces to provide the target points, which were

located by manually clicking on the intersections of grid lines in enlarged images. Later on,

we instead used the automatically recognizable targets described in Appendix C. The 3D

locations of the target points were found in one of two ways: by locating the target points

in the luminance channel of range images from the Cyberware scanner (which give the 3D

coordinates of the corresponding points directly in the scanner's coordinate system) or by

using the technique of bundle adjustment described in Appendix B to locate a set of targets

from a series of photographs.

Given a set of 3D points x1; : : : ;xn and their projections y1; : : : ;yn, we can �nd the

parameters of the camera by solving a �tting problem. We encapsulate the camera's pa-

rameters in a vector with nine entries to account for the nine degrees of freedom in the

perpendicular to the image plane.
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camera model.2 Let f(a; �) : IR3 ! IR2 be the camera model for the parameter vector a;

that is, f(a;x) is the location that the camera model predicts for the image of the point x

using the parameters contained in a. We can estimate a by solving the following nonlinear

least squares problem:

min
a

X
i

(f(a;xi)� yi)2: (A.1)

We have written code in the matlab numerical computation environment to solve this

system with some or all of the internal parameters held �xed. As with many nonlinear

equations, �nding a good starting point for the iterative solution is important for quick

convergence to the correct answer. We use a weak perspective approximation to the camera

model for this purpose [20]. Because of the comparatively small amount of data we get from

a single view, we normally do not attempt to �nd all nine parameters with this equation;

rather, we solve for the pose alone (6 parameters) or for the pose and principal distance

(7 parameters), using previously measured values for the internal parameters that we hold

�xed.

The precision of the result of this pose estimation process depends on the set of points

being used, what internal parameters are variable, and the precision of the input measure-

ments. A strong point set is one that has points at a range of distances from the camera; this

allows two types of nearly indistinguishable motions to be measured more accurately: �rst,

it helps distinguish camera translation perpendicular to the view direction from camera

rotation, and second, it helps distinguish translation along the view direction from change

in focal length.

To �nd the full set of internal parameters, we used the self-calibrating bundle adjust-

ment computation described in Appendix B. By this means we measured the internal

parameters once for each camera-lens combination we used. We assumed that the principal

point so obtained was valid for any focus setting on the lens, but the principal distance

clearly changed with focus setting and therefore had to be re-measured each time that set-

ting was changed. Since there was no way to precisely repeat a focus setting, this meant

measuring the focal length before every experiment. In situations where camera pose was

being estimated from a geometrically strong set of point correspondences, we included the

focal length in the pose estimation, �nding it simultaneously with the camera pose, but in

situations where the point set was weaker, we used a small bundle adjustment system with

�xed principal point to estimate the focal length, which was then used as a �xed value in

the pose estimation.

2The pose is represented by the cartesian coordinates of c and a Cayley transformation [61]
representation of the orientation of the frame.
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A.2 Radiometric Calibration

Whenever we interpret pixel values in images as radiance measurements, we must know the

relationship between the radiance arriving at the camera's lens and the digital code values

reported by the camera software. The function that maps radiance to digital code value

is known as the opto-electronic conversion function, or OECF. It can vary from pixel to

pixel, both because of manufacturing variations in the CCD elements themselves (known

as �xed-pattern noise) and due to variations with angle in the radiance throughput of the

camera (known as lens fallo�) [33, 32]. We treated radiometric calibration di�erently for

each of the two cameras described in Appendix D.

The PXL camera system is designed to have a linear OECF, and that property has been

separately veri�ed for the particular camera system we used [13]. The task of radiometric

calibration for this camera is to characterize the variation in the slope and o�set of this linear

function across the image, an operation known as 
at �eld calibration. We compensated

for pixel-wise variation in o�set by subtracting a dark image, taken without opening the

camera's shutter, from each image we measured. We measured the slope variation by

exposing the camera to the uniform radiance �eld produced by an integrating sphere light

source (Labsphere CSTM-USS-1200),3 using several focus and aperture settings. For each

image so obtained, we �t the radial quadratic model

a� b[(x� x0)2 + (y � y0)2] (A.2)

to the pixel values, solving for a, b, x0, and y0. The resulting values for a and b varied

systematically with focus but not with aperture over the range we used (f=8{f=22). The

resulting values for x0 and y0 also varied with focus, though barely measurably; we used a

single (x0; y0) pair for all focus positions with no appreciable e�ect on the results. Dividing

by the �tted quadratic model corrected for all noticeable systematic variation in response.

For example, Figure A.2, part (a), shows the uncorrected pixel values for one image plotted

against distance from (x0; y0). Note how the values decrease away from the center of the

image. (The few outliers are caused by dust in the camera.) The corrected values are

plotted on an expanded scale in part (b).4 The remaining variation, due to random and

�xed-pattern noise (including that due to dust in the optical system), is less than 1%, which

we considered acceptable for our purposes.

For the DCS camera, we assumed lens fallo� to be negligible, because of the longer focal

lengths and smaller sensor dimensions involved compared to the PXL camera. We also

ignored �xed-pattern noise. We characterized the OECF by photographing a calibrated

3The sphere was illuminated by the SB-16 
ash, rather than by its built-in sources.
4The plots actually show only a fraction of the pixels, because including all the pixels makes the

�gure hard to read.
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Figure A.2: Correcting for lens fallo� in 
at-�eld calibration. Pixel val-
ues versus distance from image center (a) before correction and (b) after
correction.
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re
ectance step target (Vertex Video Systems Accu-Chart EIA Standard Re
ectance Chart)

with patches of 9 di�erent re
ectances and �tting the function y = k(x+ c)
 to the known

re
ectances and measured pixel values.5

To establish the absolute scale of the measurements from both cameras, we measured

the re
ection from a sample of known di�use re
ectance (a Spectralon sample manufactured

by Labsphere, R = 0:99 � 0:002 over the visible range) with normal incidence and known

light source position, using the same �lters and lens settings that were used during the

actual measurements. Before we stabilized the light output from the 
ash (Appendix D),

we included the sample in every measurement image, but with the light source stable we

only needed to calibrate once.

5The DCS420's sensor has masked columns at the sides of the image for measuring dark current;
we subtracted the mean value of these dark pixels from each image before using it.



Appendix B

Bundle Adjustment

To calibrate cameras and to measure the positions of targets used for later pose estimation,

we used a technique known in the photogrammetry literature as self-calibrating bundle

adjustment [26, 22, 12]. The idea of bundle adjustment is as follows: suppose we have

taken n photographs of m �xed three-dimensional points xj. If we record the position

yij = (uij ; vij) of the image of point j in camera i for i = 1; : : : ; n and j = 1; : : : ;m

(Figure B.1), we get a total of 2mn measurements that depend on both the poses of the n

cameras and the locations of the m points. Together, the camera poses and point locations

have 6n + 3m degrees of freedom. For su�ciently large m and n, 2mn > 6n + 3m, so we

can hope to solve for all the camera poses and all the point locations starting with nothing

but the camera model and the measured image coordinates.1

Following the notation of Appendix A, we can write the equations to be solved as:

f(ai;xj) = yij i = 1; : : : ; n; k = 1; : : : ;m: (B.1)

This system is overdetermined for large enough m and n, so we solve it as a nonlinear least

squares problem with 6n + 3m variables and 2mn observations. We use the Levenberg-

Marquardt algorithm, as implemented in the matlab numerical computation environment,

with the perspective camera model described in Appendix A.

Finding a good starting point is critical for quick and correct convergence. We use

the elegant linear approximation proposed for the shape-from-motion problem, which is

essentially identical to bundle adjustment, by Tomasi and Kanade [58]. Their algorithm

takes the same form of input as ours, and because the formulation is linear its unique

solution can be found directly, without using iterative minimization algorithms.

1Our practical ability to do this will depend on the particular sets of points and camera poses|
for example, if all the points are collinear or all the cameras are at the same location, the system
will degenerate and will fail to have a unique solution.
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Figure B.1: Notation for bundle adjustment.

The solution of the system is slightly complicated by cases in which not all points

are visible to all cameras. Omitting some equations from the system in Equation B.1 is

simple, but extending the linear approximation to accommodate incomplete data is less

so. Tomasi and Kanade do describe a technique to handle missing points, but it is fairly

involved. Instead, we simply use a subset of the points and cameras for which visibility is

complete to compute the initial values for many of the parameters, then use pose estimation

(Appendix A) and triangulation to �ll in starting values for the rest of the cameras and

points.

Since the system is overdetermined, we can include more variables. If the internal

parameters of the cameras are unknown, we can include them as variables and solve for n

camera poses, m point locations, and p internal parameters. This technique is known as

self-calibrating bundle adjustment, since the camera calibration is handled as part of the

computation and need not be done separately. In fact, self-calibrating bundle adjustment

can be used as a camera calibration technique, in which case the camera poses and point

positions are computed as a side e�ect of �nding the internal camera parameters.

The precision of the results computed by bundle adjustment depends on the precision of

the input points and the sensitivity of the output to perturbations in the input. This sensi-

tivity depends on the con�guration of points and cameras and on what internal parameters

are included in a self-calibrating system.



Appendix C

Calibration Targets

The pose estimation and bundle adjustment algorithms described in Appendices A and

B require correspondences between known 3D points and their projections in images. To

provide these correspondences reliably and precisely, we developed special targets, printed

on a laser printer, that were automatically located and identi�ed in images.

The basic design of a target, shown in Figure C.1, is a solid circle surrounded by a ring

of curved bars. The circle is used to establish the position of the target and to estimate

its distance and orientation. The surrounding bars encode an 8-bit identifying number

(the target's ID) that allows the target to be distinguished from other targets. The code

also serves as a check to prevent other objects from being recognized as targets, since a

non-target is unlikely to be surrounded by a valid ID code.

Like many bar codes, our target IDs encode binary numbers in the widths of the black

and white bars (the white bars are the spaces between the black bars), with a wide bar

denoting 1 and a narrow bar denoting 0 (Figure C.1). All the widths are integer multiples

of a basic angular unit: a narrow bar is one unit wide, a wide bar two units, and the long

white bar that marks the start of the code is at least three units wide. Because readability

under uncertain focus and lighting was important to us, we used the largest unit that could

encode enough distinct IDs for our purposes, but in applications needing greater numbers

of targets a smaller unit could be used to encode more bits.

To avoid misrecognizing targets that are too small, too oblique, or partially obscured,

and to avoid recognizing other objects as targets, we put fairly stringent requirements on

what will be reported as a target. Every estimated bar width must be near an integer

multiple of the unit, and the total of all the bar widths must account for the entire circle.

There is also a parity bit to detect any errors that creep through. Because the most common

error in reading these codes is a two-bit error caused by a boundary shifting far enough

from its proper position to make a short-long sequence appear as a long-short sequence, the

parity is computed on only the even-numbered bits, rather than on all the bits.
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Figure C.1: The meaning of the ID code printed around a target.
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The algorithm to recognize all the targets in an image is as follows. The values t, al,

ah, d, and � are parameters to the algorithm.

Find all contiguous regions of pixels with values below t that have
areas between al and ah.

foreach such region R:
Measure the region's shape:
Compute the moments of R up to second order, including the major

and minor axis lengths a and b and the center of mass (xc; yc).
Compute the ellipse E that �ts R's moments.
Find the bar code ring:
Let E0 be the ellipse concentric with E and with major and minor

radii enlarged by �.
Sample the image around E0, four samples per unit.
Verify and decode the target ID:
Verify that the dynamic range of the collected samples is at least d.
Divide those samples into white and black spans.
Classify the spans by length as follows:

3{5 samples =) short bar
7{9 samples =) long bar
11 or more samples =) start marker
any other length =) ID is unreadable

Verify that the start marker is a white bar.
Decode the ID from the sequence of long and short bars.
Check parity using the last bit.
Report (xc; yc), A, and the ID.

When the samples are separated into spans, we use a dual-threshold hysteresis technique.

High and low thresholds are computed from the 10th and 90th percentile sample values; the

low threshold is :6v10 + :4v90 and the high threshold is :4v10 + :6v90. As we step through

the samples, a transition from low to high is registered when the high threshold is crossed,

and a transition from high to low is registered when the low threshold is crossed. This is

meant to prevent noise from causing extra transitions. Figure C.2 shows the ellipse E and

the sample points for a noisy target image from a BRDF measurement experiment. It also

shows the resulting sample values and how they were classi�ed as white (open circles) and

black (�lled circles). The ID is decoded from the sequence of bars, starting with the bar

after the start marker, by building a binary integer with a zero for each short bar and a one

for each long bar.

To recognize targets in a variety of lighting conditions, we run this algorithm for several

values of t and �. The threshold t depends on lighting because lighting a�ects the overall

intensity of the image, but the size ratio � also depends on lighting because, especially for

poorly focused targets, the relationship of t to the image intensity a�ects the estimated size

of the ellipse (though not its center, which is the primary measurement reported by this
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algorithm). Therefore trying several values of � helps �nd the bar code when the target is

di�cult to read. When a target is recognized more than once, the median of the reported

coordinates is used as the �nal measurement.

This algorithm has been through several revisions. Earlier versions rarely misrecognized

targets (one out of 300 was typically in error), and all targets that have ever been misread

would have been correctly rejected by the most recent version. Most errors were caused by

dark shadows falling across targets and lengthening the black bars of the ID code. Versions

that used a standard parity computation were susceptible to bit reversals (10 to 01 and

vice versa) under these conditions, but the later even-bit parity scheme detects such errors.

Single bit errors have never been observed.

The accuracy of the target locations depends on their size and on the uniformity of

illumination. An illumination gradient across the target, particularly for a poorly focused

image, can skew the position toward the darker side. However, since our experiments

have all used 
ash illumination from the camera position, errors caused by illumination

variations have not been a problem. By analyzing several DCS420 images from the same

camera position, we estimated the repeatability of locating targets to be approximately

0.5 �m, or 1/20 of a CCD pixel, under realistic operating conditions representative of the

situations encountered in our experiments.
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Appendix D

Cameras

The images that served as input to the inverse rendering systems described in this disser-

tation came from two digital still cameras.

The Photometrics PXL 1300L is a scienti�c digital camera designed to make precise

image measurements, with low noise even over long exposure times. Its image sensor is a

1280 by 1024 pixel Kodak KAF-1300i CCD array. The sensor is cooled thermoelectrically,

and a forced liquid coolant dissipates the heat; the array was operated at a temperature

of �25� C. This cooling reduced the dark current to two electrons per pixel per second

(as measured by the manufacturer), which is immeasurable for the short exposure times we

used. The pixels are square, measuring 16 �m on a side, leading to a total array size of 20.48

by 16.38 mm. The same lens was used for all of the experiments, a 35 mm format Nikkor

lens with a nominal focal length of 28 mm. All aspects of the camera's operation were

controlled through the IPLab software system running on an Apple Macintosh computer.

Since the PXL camera is a monochrome device, when we needed to measure wavelength

dependence we used color separation �lters. We used the red, green, and blue �lters from

a �lter wheel that was originally part of an Eikonix camera. They appear to be multi-

layer coated interference �lters, but their manufacturer is not known. We measured their

spectral transmittance using an Optronic OL-750 spectrometer; the resulting curves are in

Figure D.1. Because they have signi�cant unwanted transmittance in the infrared, where

the camera is very sensitive, we used an additional �lter, Oriel #57400, to block the near

infrared portion of the spectrum. The spectral transmittance of that �lter is also shown in

Figure D.1.

When we needed to reduce the light sensitivity of the camera, we placed neutral density

(ND) �lters in front of it. The ND �lters we used are from the set Melles Griot #03 FSQ

015, and they are made of metal-plated glass.

The other camera we used was a color Kodak DCS 420. This camera is meant for

the professional photography market, and is widely used by photojournalists. As such, it
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the three color separation �lters and the �lter used to block the near infrared. The product
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concentrates less on low noise and more on convenience and portability. Kodak's digital

camera back �ts onto a Nikon N90 camera body, replacing the �lm with a CCD array; the

N90's lens and shutter, as well as its autofocus and autoexposure systems, operate just as

they would when exposing �lm. The sensor is a Kodak KAF-1600c, which has 1536 by

1024 9 �m pixels (image area 13.8 by 9.2 mm) and an RGB color �lter array. When we

needed color images, we used Kodak's supplied software to read the images from the camera

and reconstruct a full-color image from the color �lter mosaic, but when we needed only

greyscale we began with the raw images and linearly interpolated the green pixels to a full

image. We used two lenses with this camera, both 35 mm format Nikon lenses: a 50 mm

standard lens and a 55 mm macro lens.

The illumination for all the photographs from both cameras was provided by a Nikon

SB-16 
ash, which incorporates a xenon 
ash tube, together with electronics for various

auto-exposure functions. We used the 
ash exclusively in Manual mode, in which it produces

a full-power 
ash every time it is triggered.

When consistency from 
ash to 
ash was required, we powered the SB-16 from a regu-

lated power supply rather than from the supplied battery pack. Our experiments indicate

that with regulated voltage and a charge time of at least 20 seconds, the mean-square vari-

ation in output is less than 1.5%. When we used the 
ash with the DCS 420 camera, it was

triggered by the camera electronics through the contacts in the camera's 
ash-mounting

shoe.

It is also important for the light output to be angularly uniform. By using the 
ash to

illuminate a uniform white board and measuring the re
ection with the already calibrated

PXL camera, we concluded that the light output is uniform to within 5% over a circle 10�

in diameter. This is much larger than the range of angles we used in our experiments.

We measured the spectral energy distribution of the 
ash's output using an Oriel Mul-

tispec 77400 spectroradiometer. The distribution is shown in Figure D.2.
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Appendix E

The Cyberware Scanner

The Cyberware 3030 is a structured-light range scanner. It senses distances to a surface by

projecting a stripe of light and observing the re
ection of that stripe with a video camera.

A laser produces a parallel beam, which is fanned out by a cylindrical lens into a vertical

sheet of light. This sheet de�nes the scanning plane. Any di�use surface in front of the

scanner re
ects light from the curve where it intersects the scanning plane. A monochrome

CCD camera positioned at an angle records an image of that curve, and since the curve is

known to lie in the scanning plane the 3D position of the portion of the curve corresponding

to each row of the camera image can be computed. This process leads to several hundred

3D points that describe the shape of the surface where it intersects the scanning plane.

To scan a 2D surface, the scanner moves relative to the surface so as to sweep the

scanning plane through a volume of space containing the object. The scanner acquires 30

curves per second, so that all of the surface visible to the scanner can be digitized over the

course of a few seconds.

The scanner is moved relative to the object by one of two motion platforms. The PS

platform, for scanning human subjects, consists of a platform, on which a chair is placed

where the subject sits, and an arm that holds the scanner at head height and rotates a full

360� around the platform. The resulting dataset consists of a series of constant-� curves in

an (r; y; �) cylindrical coordinate system.

The second platform, the MS platform, is meant for scanning rigid objects. On this

platform the scanner stays stationary while the object either rotates or translates in front

of it. The object sits on a 600 mm circular turntable, which is mounted on a 1.5 m horizontal

translation stage. Only one of the two possible motions is used for any given scan, leading

to data in cylindrical coordinates for a rotational scan or in Cartesian coordinates for a

translational scan.

The data from the scanner consists of a 2D array of points, together with luminance

values that give the strength of the re
ected signal used to locate each point. This luminance
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image can be used to locate targets on objects being scanned for calibration. The scanner

also includes a separate RGB camera to provide measurements of surface color, but we

opted to use color data from a separate camera when we needed it.



Appendix F

BRDF Measurement Procedure

This appendix gives the details of the procedure used to obtain the data reported in Chap-

ter 5.

The samples were prepared for measurement by painting them with consumer spray

paints. Achieving a uniform �nish while painting was critical to having a well-de�ned

BRDF to measure. The cylinder was painted while standing on a 
at surface; the spheres

were painted while supported in mid-air on a stand. Two to three coats of each paint

were applied, with the spherical samples rotated between and during coats. At the same

time and under the same conditions, 
at aluminum plates were painted to be measured

independently. In the case of the cylinder, care was taken to record the orientation of the


at sample so that it could be measured in the same plane as the cylinder to prevent any

gravity-induced anisotropy from a�ecting the comparison.

After the samples dried, they were brought into the lab and measured. The procedure

used for a typical measurement, including the calibration steps required for a particular

sample setup, is as follows.

1. Center the test sample on the turntable. Place the sample near the center of the

turntable.1 Set up a laser to graze the surface and rotate the table, repeatedly ad-

justing the sample and the laser until a full revolution can be made with the laser

grazing the surface.

2. Set up the primary camera. Set the desired lens aperture (normally f=11). Approxi-

mately level the camera rail using the tripod's controls. Focus on the silhouette edge

of the test sample.

3. Set up the secondary camera. Set the desired lens aperture to avoid saturation at

1The turntable axis was known relative to the calibration targets because some of the targets
were attached to the edge of the circular turntable.
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the closest approach to the calibration targets (normally f=32). Set the focus at an

intermediate value (normally 2 m). Set all camera modes to manual, and set the

camera for minimum sensitivity (ISO 100).

4. Set up the light source. Attach the 
ash to the secondary camera. Connect it to

the power supply, and set the supply limits at 6.00 V, 5 A. Set the 
ash to manual

mode. Set the height of the secondary camera's tripod to put the light source at

approximately the same height as the primary camera's lens.

5. Calibrate the primary camera's pose.

(a) Put a temporary set of calibration targets (laser printer output glued to a metal

plate) in front of the test sample.

(b) With the translation platform at 0 mm (all movements of the platform are made

relative to a �xed \home" position, designated 0 mm), take three exposures

with the secondary camera from well-separated viewpoints. Be sure that all the

temporary targets and several permanent targets are visible in each image.

(c) Take three exposures with the primary camera, with the translation stage at -100

mm, 0 mm, and 100 mm.

(d) Return the motion stage to 0 mm and remove the temporary targets.

6. Make the measurements. For each of a number of light source positions (normally 32),

do the following:

(a) Move the secondary camera tripod to the next position.

(b) Pan the secondary camera to face the sample and tilt it so that it can see the

calibration targets below the sample.

(c) Start a 0.5 second exposure on the primary camera, and manually trigger the

secondary camera between the shutter clicks.

(d) If color separation �lters are being used, repeat the exposure for the other two

colors (trigger the 
ash directly for these exposures rather than triggering the

secondary camera, so as to end up with only one calibration image per camera

position).

Throughout the measurement, care was taken to ensure that light from the 
ash could

not directly enter the box around the primary camera's optics, because such direct illumi-

nation can introduce stray light, re
ections, and lens 
are into the measurement images.

These problems were prevented by setting up a black ba�e to shadow the camera and by

moving it from time to time as required by the changing light source position.



Bibliography

[1] Adobe Systems, Inc. Adobe Photoshop 5.0 User Guide. San Jose, CA, 1998.

[2] M. Agrawala, A. C. Beers, and M. Levoy. 3D painting on scanned surfaces. In 1995
Symposium on Interactive 3D Graphics, pages 145{150. ACM SIGGRAPH, April 1995.

[3] Suraiya P. Ahmad and Donald W. Deering. A simple analytical function for bidirec-
tional re
ectance. Journal of Geophysical Research, 97(D17):18,867{18,886, 1992.

[4] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards image realism with interac-
tive update rates in complex virtual building environments. In 1990 Symposium on
Interactive 3D Graphics, pages 41{50. ACM SIGGRAPH, March 1990.

[5] James Arvo and David Kirk. Particle transport and image synthesis. In Computer
Graphics (SIGGRAPH '90 Proceedings), pages 63{66, August 1990.

[6] James Richard Arvo. Analytic Methods for Simulated Light Transport. PhD thesis,
Yale University, 1995.

[7] R�ejean Baribeau, Marc Rioux, and Guy Godin. Color re
ectance modeling using a
polychromatic laser range sensor. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2):263{269, 1992.

[8] Thaddeus Beier and Shawn Neely. Feature-based image metamorphosis. In Computer
Graphics (SIGGRAPH '92 Proceedings), pages 35{42, July 1992.

[9] Chakib Bennis, Jean-Marc V�ezien, and G�erard Igl�esias. Piecewise surface 
attening for
non-distorted texture mapping. In Computer Graphics (SIGGRAPH '91 Proceedings),
pages 237{246, July 1991.

[10] Eric A. Bier and Kenneth R. Sloan, Jr. Two-part texture mappings. IEEE Computer
Graphics and Applications, 6(9):40{53, September 1986.

[11] James F. Blinn and Martin E. Newell. Texture and re
ection in computer generated
images. Communications of the ACM, 19(10):542{546, 1976.

[12] J. H. Chandler and C. J. Pad�eld. Automated digital photogrammetry on a shoestring.
Photogrammetric Record, 15(88):545{559, 1996.

[13] Steve Shiang-Feng Chen, Jerry Wei-Chieh Li, Kenneth E. Torrance, and S. N. Pat-
tanaik. Preliminary calibration of the Photometrics PXL1300L CCD camera. Technical
Report PCG-96-1, Cornell University Program of Computer Graphics, 1996.

143



144

[14] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, Massachusetts, 1990.

[15] Brian Curless and Marc Levoy. A volumetric method for building complex models from
range images. In Computer Graphics (SIGGRAPH '96 Proceedings), pages 303{312,
August 1996.

[16] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and rendering
architecture from photographs. In Computer Graphics (SIGGRAPH '96 Proceedings),
pages 11{20, August 1996.

[17] Julie Dorsey, James Arvo, and Donald Greenberg. Interactive design of complex time
dependent lighting. IEEE Computer Graphics and Applications, 15(2):26{36, March
1995.

[18] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, and
Werner Stuetzle. Multiresolution analysis of arbitrary meshes. In Computer Graphics
(SIGGRAPH '95 Proceedings), pages 173{182, August 1995.

[19] J. Fan and I. Gijbels. Local Polynomial Modeling and Its Applications. Chapman &
Hall, London, 1996.

[20] Olivier Faugeras. Three-dimensional Computer Vision: A Geometric Viewpoint. MIT
Press, Cambridge, Massachusetts, 1993.

[21] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics: Principles and Practice. Addison-Wesley, Reading, Massachusetts, second
edition, 1990.

[22] C. S. Fraser, M. R. Shortis, and G. Ganci. Multi-sensor system self-calibration. In
Videometrics IV, pages 2{18. SPIE, October 1995. Invited paper.

[23] A. Gagalowicz and Song De Ma. Model driven synthesis of natural textures for 3-D
scenes. Computers and Graphics, 10(2):161{170, 1986.

[24] Andrew S. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann, San
Francisco, 1995.

[25] Gene Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, third edition, 1996.

[26] S. I. Granshaw. Bundle adjustment methods in engineering photogrammetry. Pho-
togrammetric Record, 10(56):181{207, 1980.

[27] Paul R. Halmos. Measure Theory. Springer-Verlag, New York, 1974.

[28] Pat Hanrahan and Paul Haeberli. Direct WYSIWYG painting and texturing on 3D
shapes. In Computer Graphics (SIGGRAPH '90 Proceedings), pages 215{223, August
1990.

[29] Pat Hanrahan and Wolfgang Krueger. Re
ection from layered surfaces due to subsur-
face scattering. In Computer Graphics (SIGGRAPH '93 Proceedings), pages 165{174,
August 1993.



145

[30] Xiao D. He, Kenneth E. Torrance, Fran�cois X. Sillion, and Donald P. Greenberg. A
comprehensive physical model for light re
ection. In Computer Graphics (SIGGRAPH
'91 Proceedings), pages 175{186, July 1991.

[31] Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applica-
tions, 6(11):56{67, November 1986.

[32] Gerald C. Holst. CCD Arrays, Cameras, and Displays. SPIE Optical Engineering
Press, Bellingham, Washington, 1996.

[33] Berthold K. P. Horn and Michael J. Brooks. Shape from Shading. MIT Press, Cam-
bridge, Massachusetts, 1989.

[34] Katsushi Ikeuchi and Kosuke Sato. Determining re
ectance properties of an object us-
ing range and brightness image. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(11):1139{1153, 1991.

[35] James T. Kajiya. The rendering equation. In Computer Graphics (SIGGRAPH '86
Proceedings), pages 143{150, August 1986.

[36] Konrad F. Karner, Heinz Mayer, and Michael Gervautz. An image based measure-
ment system for anisotropic re
ection. Computer Graphics Forum (Eurographics '96
Proceedings), 15(3):119{128, August 1996.

[37] John K. Kawai, James S. Painter, and Michael F. Cohen. Radioptimization|goal
based rendering. In Computer Graphics (SIGGRAPH '93 Proceedings), pages 147{
154, August 1993.

[38] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice-Hall, En-
glewood Cli�s, NJ, 1974.

[39] Marc Levoy and Pat Hanrahan. Light �eld rendering. In Computer Graphics (SIG-
GRAPH '96 Proceedings), pages 31{42, August 1996.

[40] Song De Ma and Andre Gagalowicz. Determination of local coordinate systems for
texture synthesis on 3-D surfaces. Computers and Graphics, 10(2):171{176, 1986.

[41] Stephen R. Marschner and Donald P. Greenberg. Inverse lighting for photography. In
Proceedings of the Fifth Color Imaging Conference. IS&T and SID, November 1997.

[42] Saied Moezzi, Li-Cheng Tai, and Philippe Gerard. Virtual view generation for 3D
digital video. IEEE MultiMedia, pages 18{26, January{March 1997.

[43] James R. Munkres. Topology: A First Course. Prentice-Hall, Englewood Cli�s, New
Jersey, 1975.

[44] Shree K. Nayar, Katsushi Ikeuchi, and Takeo Kanade. Shape from interre
ections.
International Journal of Machine Vision, 6(3):173{195, 1991.

[45] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. Ge-
ometric considerations and nomenclature for re
ectance. Monograph 161, National
Bureau of Standards (US), October 1977.



146

[46] J. S. Nimero�, E. Simoncelli, and J. Dorsey. E�cient re-rendering of naturally illu-
minated environments. In Fifth Eurographics Workshop on Rendering, pages 359{373,
Darmstadt, Germany, June 1994.

[47] Eyal Ofek, Erez Shilat, Ari Rappoport, and Michael Werman. Multiresolution textures
form image sequences. IEEE Computer Graphics and Applications, 17(2):18{29, 1997.

[48] A. P. Pentland. Finding the illuminant direction. Journal of the Optical Society of
America A, 72:448{455, 1982.

[49] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C: The Art of Scienti�c Computing (2nd ed.). Cambridge Uni-
versity Press, Cambridge, 1992.

[50] Marc Proesmans and Luc Van Gool. A sensor that extracts both 3D shape and surface
texture. In Proceedings of the 1996 IEEE/SICE/RSJ International Conference on
Multisensor Fusion and Integration for Intelligent Systems, pages 485{492. IEEE, 1996.

[51] Kari Pulli, Michael Cohen, Tom Duchamp, Hugues Hoppe, Linda Shapiro, and Werner
Stuetzle. View-based rendering: Visualizing real objects from scanned range and color
data. In Rendering Techniques '97 (proceedings of the eighth Eurographics Rendering
Workshop), pages 23{34. Springer-Verlag, June 1997.

[52] M. Rioux. Digital 3-D imaging: Theory and application. In Videometrics III, pages
2{15. SPIE, November 1994. Invited paper.

[53] Yoichi Sato and Katsushi Ikeuchi. Re
ectance analysis for 3D computer graphics model
generation. Graphical Models and Image Processing, 58(5):437{451, 1996.

[54] Yoichi Sato, Mark D. Wheeler, and Katsushi Ikeuchi. Object shape and re
ectance
modeling from observation. In Computer Graphics (SIGGRAPH '97 Proceedings),
pages 379{387, August 1997.

[55] Chris Schoeneman, Julie Dorsey, Brian Smits, James Arvo, and Donald Greenberg.
Painting with light. In Computer Graphics (SIGGRAPH '93 Proceedings), pages 143{
146, August 1993.

[56] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte Carlo techniques for
direct lighting calculations. ACM Transactions on Graphics, 15(1):1{36, 1996.

[57] Patrick C. Teo, Eero P. Simoncelli, and David J. Heeger. E�cient linear re-rendering for
interactive lighting design. Technical Report STAN-CS-TN-97-60, Stanford University,
October 1997.

[58] Carlo Tomasi and Takeo Kanade. Shape and motion from image streams under orthog-
raphy: A factorization method. International Journal of Machine Vision, 9(2):137{154,
1992.

[59] K. E. Torrance and E. M. Sparrow. O�-specular peaks in the directional distribution of
re
ected thermal radiation. In Transactions of the ASME, pages 1{8, Chicago, Illinois,
November 1965.



147

[60] Roger Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using o�-the-shelf tv cameras and lenses. IEEE Journal of Robotics
and Automation, RA-3(4):323{344, 1987.

[61] Panagiotis Tsiotras, John L. Junkins, and Hanspeter Schaub. Higher order cayley
transforms with applications to attitude representations. Journal of Guidance, Control,
and Dynamics, 20(3):528{536, 1997.

[62] Greg Turk. Generating textures for arbitrary surfaces using reaction-di�usion. In
Computer Graphics (SIGGRAPH '91 Proceedings), pages 289{298, July 1991.

[63] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Computer
Graphics (SIGGRAPH '94 Proceedings), pages 311{318, July 1994.

[64] Gregory J. Ward. Measuring and modeling anisotropic re
ection. In Computer Graph-
ics (SIGGRAPH '92 Proceedings), pages 265{272, July 1992.

[65] D. Rod White, Peter Saunders, Stuart J. Bonsey, John van de Ven, and Hamish Edgar.
Re
ectometer for measuring the bidirectional re
ectance of rough surfaces. Applied
Optics, 37(16):3450{3454, 1998.

[66] Andrew Witkin and Michael Kass. Reaction-di�usion textures. In Computer Graphics
(SIGGRAPH '91 Proceedings), pages 299{308, July 1991.


	Abstract
	Front matter
	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures

	Introduction
	Background
	Mathematical Preliminaries
	Radiometry
	The Bidirectional Reflectance Distribution
	Definition and basic properties
	Common reflectance phenomena

	Rendering

	Inverse Lighting
	Problem Statement
	Prior Work
	Basic Least-squares Solution
	Regularized Solution
	Accelerating using the GSVD

	Re-lighting
	A Test with a Synthetic Photograph
	A Test with a Rigid Object
	Camera Calibration
	Results

	Tests on Human Faces
	Filtering out unreliable data
	2D image warps to correct registration
	Results

	Conclusion
	Future work


	Photographic Texture Measurement
	Prior Work
	Texture mapping
	3D scanning and reflectance modeling

	Texture Representation
	Estimating Reflectance
	Estimating with a Lambertian BRDF model
	Using non-Lambertian models

	A Synthetic Example
	Measurement Setup
	Results
	Future Work
	Conclusion

	Image-based BRDF Measurement
	Overview of Method
	Sampling patterns

	Prior Work
	Apparatus
	The primary camera
	The test samples
	Calibration

	Data Processing
	Results
	Incidence plane measurement
	Full isotropic measurements

	Mapping the BRDF Domain to 3-space
	A simple cylindrical mapping
	A mapping for visualization
	A mapping for resampling

	BRDF Resampling
	Local polynomial regression
	Reconstructing using psi_3

	Conclusion
	Future work


	Conclusion
	Appendices
	Camera Calibration
	Geometric Calibration
	Radiometric Calibration

	Bundle Adjustment
	Calibration Targets
	Cameras
	The Cyberware Scanner
	BRDF Measurement Procedure
	Bibliography


