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ABSTRACT

We present a method to accelerate global illumination computation in

dynamic environments by taking advantage of limitations of the human

visual system. A model of visual attention is used to locate regions of interest

in a scene and to modulate spatiotemporal sensitivity. The method is applied

in the form of a spatiotemporal error tolerance map. Perceptual acceleration

combined with good sampling protocols provide a global illumination solu-

tion feasible for use in animation. Results indicate an order of magnitude

improvement in computational speed. The method is adaptable and can also

be used in image-based rendering, geometry level of detail selection, realistic

image synthesis, video telephony and video compression.
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CHAPTER 1

Introduction

ren-der - To give what is due or owed; To reduce, convert, or melt down fat
by heating; To represent in a drawing or painting; - from dictionary.com

In the quest for realism, computer graphics technology has evolved over

the years from simple vector line drawings to the current state-of-the-art pho-

torealistic images that are indistinguishable from photographs of the real

world. The price of increased realism is the corresponding increase in com-

puter time required to generate these images. Rendering a single realistic

image frame can take many days even on the fastest computers of the new

millennium (2000 AD).

One class of rendering algorithms used to generate realistic images are

those that perform global illumination, the calculation of light transport in an

environment [Gree97]. Figure 1.1 shows an example of an environment ren-

dered with the global illumination technique. Many effects such as caustics,

area light sources, soft shadows, anti-aliasing, motion blur and color bleeding

are a natural result of the use of global illumination and do not require spe-

cific user intervention to construct. Global illumination generated images are

physically accurate and are computed with high dynamic range. When mea-

sured data are used for the geometry and surface properties of objects in a

scene, the image produced by a global illumination algorithm is practically

indistinguishable from reality.
1



2

Figure 1.1: Global Illumination of a Dynamic Environment

Global illumination correctly simulates effects such as color bleeding (the
green of the leaves on to the petals), motion blur (the beak and leg of the pink
flamingo), caustics (the reflection of the light by the golden ash tray on the
wall), soft shadows (the gradual change between the umbra and penumbra of
the golden ash tray on the wall), anti-aliasing, and area light sources. The
expensive operation of calculating a lighting solution for an environment
benefits greatly from our new technique, which can be applied to animation
as well as motion-blurred still images such as shown above.
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Global illumination algorithms work by solving the rendering equation

proposed by Kajiya [Kaji86]:

(1.1)

where LOut is the radiance leaving a surface, LE is the radiance emitted radi-

ance by the surface, LIn is the radiance of an incoming light ray arriving at the

surface from light sources and other surfaces (e.g. reflector R), fr is the bi-

directional reflection distribution function of the surface, θ is the angle

between the surface normal and the incoming light ray, and dωθ is the differ-

ential solid angle around the incoming light ray.

The equation essentially states that the light arriving at the eye is the sum

of the light emitted from the surface, as well as the light reflected off the sur-

face from light sources or other reflecting surfaces. The rendering equation is

graphically depicted in Figure 1.2.

In Figure 1.2, LIn is an example of a direct light source, such as a light

bulb, while L’In is an example of an indirect light source, which can be light

reflected from another reflecting surface such as a wall. To compute the glo-

bal illumination of an environment, the rendering equation is recursively

applied to reflecting surfaces like R as well as on all other surfaces and light

sources in the environment. The light seen by the eye, LOut, is simply the

integral of the indirect and direct light sources modulated by the reflectance

function of the surface over the hemisphere Ω.

Let us consider the approximate expense of a fully-converged, global illu-

mination solution in terms of year 2000 (Y2K) technology. A typical Y2K

CRT monitor would have on the order of 1,000,000 pixels. Assuming a scene

complexity of 100,000 polygons, a voxel-grid intersection algorithm takes

LOut LE LInfr θ( )cos ωθd

Ω
�+=
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about 100 cycles/sample to compute a single ray-triangle intersection. Since

a voxel-grid intersection has logarithmic performance, and adding in the

overhead of calculating shading, we estimate the cost for a single sample to

be 1,000 cycles/sample. In order to get a good quality image, the global illu-

mination algorithm would perform Monte Carlo integration on the rendering

equation by shooting about 1,000 samples per pixel with an average path

depth of 10 for a total of 10,000 samples per pixel. A typical Y2K processor

runs at the speed of 1 GHz. Therefore a single image frame would take:

106 pixels * 104 samples/pixel * (103 cycles/sample) / 1 GHz = 104 s (1.2)

From the equation above, we estimate the time taken to compute a single

converged image to be 104 s or about 3 hours per frame. On a quad-processor

compute node, it would take about 45 minutes to compute a fully converged

Figure 1.2: Graphical Depiction of the Rendering Equation

The lighting solution is being computed for surface S, with light coming from
direct light sources or indirect light sources such as another surface, R.

LIn

θ dωθ

L’In

Ω

Surface S

LE

Light
Source

Another
Surface
(e.g. reflector R)

Surface Normal

Emitted Light

R

LOut
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image using Y2K ballpark figures for computer power and display image

sizes. These are timing figures for a single frame. In dynamic environments,

where moving objects and lights can potentially affect the lighting solution of

every other object in the environment, a global illumination algorithm is

forced to recompute the lighting solution anew for every frame in order to get

a correct solution. Clearly, using a naive global illumination algorithm would

be impractical for rendering dynamic environments, given the fact that the

1,000 frames for a 33 second video would take 125 days to compute on a uni-

processor system! Even Moore’s Law would not be useful for some time;

therefore, we have to turn to alternative algorithms in order to practically

apply global illumination algorithms to rendering dynamic environments.

There are a few ways to speed up the lighting computation of a dynamic

environment. The brute force approach would be to throw more computer

power at the problem by distributing the rendering calculation over a cluster

of linked computers. This would buy us an order of magnitude improvement.

Another order of magnitude speedup can be achieved by finding some way to

exploit the spatiotemporal coherence inherent in an animation by using some

kind of interpolation scheme. Lastly, our results have shown that intelligently

applying a perceptual oracle to guide a global illumination algorithm would

buy us another crucial order of magnitude in order to reduce the computation

time of a 33 second video, by three orders of magnitude, from 125 days to a

manageable 3 hours.

This thesis deals with the perceptually-based rendering of dynamic envi-

ronments. The major assumption is that rendering is an expensive operation,

and saving on computation costs in any way is substantially beneficial. One

of the ways to save on computation costs is by the use of perceptual error

metrics, which are error metrics based on computational models of the
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human visual system. Error metrics operate on two intermediate images of a

global illumination solution in order to determine if the visual system is able

to differentiate these two images. In this way, these perceptual metrics assist

in rendering by informing a rendering algorithm when and where it can stop

an iterative calculation prematurely because one may chose to stop solving

when the differences are not perceptually noticeable. In doing so, perceptu-

ally-based renderers attempt to expend the least amount of work to obtain an

image that is perceptually indistinguishable from a fully converged solution.

A perceptual oracle, such as the one described in this thesis, is slightly differ-

ent from a perceptual error metric. A perceptual oracle does not explicitly

compute an error bound for a stopping condition by computing error differ-

ences, but instead provides perceptual information in advance of any global

illumination computation in order to determine the most efficient way to ren-

der an image. The technique described in this paper is a perceptual oracle that

assists rendering algorithms by producing a spatiotemporal error tolerance

map (Aleph/ℵ Map) that can be used as a guide to optimize rendering. Figure

1.3 depicts an overview of the perceptual model used to generate the Aleph

Map. It is called the Aleph Map because it is short for Application Adapted

Attention Modulated Spatiotemporal Sensitivity Map.

Two psychophysical concepts are harnessed to generate the Aleph Map:

spatiotemporal sensitivity and visual attention. The former tell us how much

error we can tolerate and the latter, where we look. Sensitivity is important

because it allows us to save on computation in areas where the eye is less sen-

sitive and visual attention is important because it allows us to use sensitivity

information wisely. Areas where attention is focused must be rendered more

accurately than less important regions.
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This thesis is organized in the following way: Chapter 2 will deal with the

previous work related to this thesis, and Chapter 3 will cover the background

material concerning spatiotemporal sensitivity and visual attention. Chapter 4

will discuss our framework and an overview of the components required to

apply the framework to global illumination. Chapter 5 will cover the imple-

mentation details of the framework and a practical augmentation of the

widely used lighting solver RADIANCE. Results will be presented in Chap-

ter 6 and we will conclude the thesis in Chapter 7 with some discussion and

ideas for future work in this area.

Figure 1.3: Overview of the Perceptual Model

A scene image estimate is first generated using fast graphics hardware. The
estimate is processed using a computational model of visual attention and
spatiotemporal sensitivity to derive the Aleph Map. The Aleph Map is then
used as a perceptual oracle to guide global illumination algorithms, reducing
lighting calculation times by an order of magnitude. The cost of calculating
the Aleph Map is negligible.

Model of Spatiotemporal

Sensitivity

Model of Visual Attention

Model of Human Visual System Response to Dynamic Environments

Scene Image Estimate

Aleph Map



CHAPTER 2

Previous Work

“To boldly go where no one has gone before” - Star Trek charter

This chapter reviews previous work that uses perceptual techniques to

speed up global illumination computation. The chapter begins with some

early work that incorporated minimal perceptual elements in progressive ren-

dering schemes and proceeds on to a review of techniques that use sophisti-

cated models of the human visual system in progressive rendering. An

excellent overview of perceptually-driven radiosity methods is given in

[Prik99] and will not be repeated here.

2.1 Perceptually-Based Adaptive Sampling

Early work in perceptually assisted rendering was mainly concerned with

the acceleration of ray tracing. These algorithms focused on anti-aliasing an

image while at the same time shooting as few samples as possible. The algo-

rithms usually sampled an image at a low density, applied some simple per-

ceptual model to the low density image, adaptively supersampled according

to the perceptual model, and then reconstructed the final image solution using

some interpolating filter kernel.

Mitchell [Mitc87] was one of the first to use a simple model of the human

visual system to assist a rendering algorithm. Mitchell’s model of the human
8
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visual system is incomplete but was one of the first to take advantage of the

decrease in the visual system’s sensitivity at high spatial frequencies and con-

trasts. The first part of his algorithm was the generation of a Poisson-disk

sampled image. The Poisson-disk sampling shifted aliasing artifacts to higher

frequencies, where the visual system is less likely to notice errors. Next, his

adaptive sampling technique took into account the non-linear response of the

eye to changes in intensity by using a weighted contrast measure of the red,

green and blue channels of the Poisson-disk sampled image. The algorithm

then supersamples regions of the image for which the contrast measure

exceeded a set threshold to obtain the adaptively sampled image. The adap-

tively sampled image is then convolved with a reconstruction filter to obtain

the final rendered image.

Another paper that made use of an adaptive sampling scheme was written

by Painter and Sloan [Pain89]. Painter’s adaptive algorithm generated a k-D

tree that partitioned the image plane into rectangular regions recursively. At

each node of the tree was a variance estimate that contained the approxima-

tion error estimate for the node. The algorithm refined each node of the tree

progressively until pixel level accuracy was attained. Painter and Sloan

briefly mention that their algorithm could take into account the non-linear

response of the human visual system to intensity variations but do not explic-

itly describe the implementation of a perceptual measure in their paper.

Meyer and Liu [Meye92] however, extended the Painter and Sloan algorithm

to take advantage of the limited sensitivity of the human visual system to

color variations. In their scheme, more rays were shot at places in the scene

with intensity changes rather than color changes, resulting in a moderate

speedup in rendering.
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Bolin and Meyer [Boli95] developed a frequency-based ray tracer that

rendered directly into the frequency domain and used a more complete model

of the human visual system to guide rendering than the earlier algorithms.

Their technique took into account two characteristics of the human visual

system: contrast sensitivity and spatial frequency response. The visual sys-

tem is less likely to notice errors in regions of an image of high contrast, or

high spatial frequency. Since the ray tracer operates in the frequency domain,

the algorithm could choose to spawn more rays when there is low contrast or

low spatial frequency. The ray tracer also spawned more rays for spatial

luminance changes rather than color changes.

2.2 Perceptual Metrics

Another class of perceptually-based renderers use sophisticated percep-

tual metrics to inform the renderer to stop calculating when the lighting solu-

tion has errors that are below a threshold determined by a perceptual model

of the visual system. The basic operation in these techniques is to perform a

comparison between two intermediate images of a rendering and to stop the

rendering whenever the measure of error between the two images is smaller

than some threshold. The error between two images can be something as sim-

ple as the absolute difference between the images, or the sum of squared dif-

ferences between corresponding pixels of the images. This kind of error

metric is known as a physically based error metric. Another form of error

metric is a perceptual error metric, in which the physical information is fed to

a model of the human visual system before the error computation is per-

formed. Figure 2.1 is a conceptual diagram of the use of a perceptual metric

in progressive rendering.



11
Figure 2.1: Conceptual Diagram of Perceptually-assisted Rendering

Perceptually-assisted rendering makes use of a perceptual metric to compare
intermediate results of a lighting computation, directing the rendering to halt
when there is no perceptual difference between the two intermediate results.

Rendering
Engine
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Solution

N

Lighting
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N+1
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Perceptible difference,
render solution N+2
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Perceptual
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Perceptual
Response
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In the figure, the rendering engine produces two images at different stages

of the lighting calculation. The two images are compared using the percep-

tual metric and if there is no perceptual difference between them, the algo-

rithm halts and the image is said to be converged, at least in the perceptual

domain. Otherwise, the rendering engine continues the lighting computation

and repeats the process until the perceptual differences are small enough to

meet a user specified convergence limit.

The Daly Visible Differences Predictor (VDP) [Daly93] and the Sarnoff

Visual Discrimination Model (VDM) [Lubi95] are two commonly used per-

ceptual metrics. Both metrics measure the perceptual differences between

two images and calculate the difference using sophisticated models of the

human visual system.

The Daly VDP, given two images, returns a map that contains the proba-

bility of detection of differences between the images. The VDP takes into

account the light levels, the spatial frequency content and the orientation sig-

nal content in the images. The process begins by applying an amplitude non-

linearity function to the luminance channel of the image. This models the ret-

inal response to the image luminance. In the next stage, the Contrast Sensitiv-

ity Function is used to determine the visual sensitivity to spatial patterns in

the retinal response image. The Contrast Sensitivity Function is an experi-

mentally derived equation that quantifies the human visual sensitivity to spa-

tial frequencies and will be covered in detail in the next section of this

chapter. The CSF was used in the VDP as a normalization factor for the sub-

sequent detection mechanisms. There are four detection mechanisms in the

Daly VDP: the spatial frequency hierarchy, the masking function, the psycho-

metric function and probability summation [Daly93]. In the spatial frequency

hierarchy stage, the image is decomposed into several frequency sub-bands
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and orientation bands, and then weighted by the CSF and the masking func-

tion. The masking function models the decrease in sensitivity to a signal in

the presence of another signal in the same frequency subband. The product of

the CSF and the masking function is known as the threshold elevation factor.

This elevation factor is used to weight the spatial frequency and orientation

signals. The two images being compared are identically subjected to the sig-

nal processing described above, and the differences between the signals are

applied to a psychometric function which converts a contrast difference into a

probability of detection. The probabilities for each spatial frequency and ori-

entation channel are combined to derive a final per pixel probability of detec-

tion value. Figure 2.2 provides a graphical overview of the Daly VDP.

The Sarnoff Visual Discrimination Model [Lubi95] is another well

designed perceptual metric that is used for determining the perceptual differ-

ences between two images. The Sarnoff VDM returns the map of Just-

Noticeable-Differences (JNDs) between the images and is an image space

algorithm, similar to the Daly VDP. The Sarnoff VDM begins by convolving

the image with a point spread function that models the effect of the optics of

the eye on the image. The processed image is then re-sampled according to

foveal eccentricity to model the decrease in spatial resolution away from the

foveal regions of the retina. Next, the band-pass contrast responses are

obtained by decomposing the image into a contrast pyramid using the tech-

nique of Burt and Adelson [Burt83]. Each band-pass contrast response level

of the pyramid is then processed using the steerable filters of Freeman and

Adelson [Free91] in order to extract orientation information from each level.

The output of the orientation filtering is then summed and weighted by the

CSF and passed through a non-linear transform to model the changes in sen-

sitivity with spatial frequency and contrast respectively. The two images to
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Figure 2.2: Daly VDP Overview

The process by which two images are compared for perceptual differences in
the Daly VDP. The images are decomposed into a series of spatial frequency
and orientation signals, weighted by the CSF and the masking function. The
difference of signals is taken between the two images and converted to
probabilities using the psychometric function and summed to derive a single
per pixel probability of detection.

Image 1

Amplitude
Non-linearity

Contrast
Sensitivity

Spatial
Frequency
Hierarchy

Masking
Function

Masking
Function

From Image 2

Difference

Psychometric Function

Probability Summation

31 Channels of
Spatial Frequency
and Orientation
Signals



15
be compared are subjected to identical processing as described above and a

distance measure is computed by taking the difference in responses for each

channel processed and summing them together to obtain the JND map of the

two images. Figure 2.3 provides a graphical overview of the Sarnoff VDM.

Li, et. al., [Li98] provide an excellent comparison of the Daly and Sarnoff

perceptual metrics in their paper.

A comprehensive model of visual masking was developed by Ferwerda et.

al. [Ferw97] that can be used to predict how the presence of one visual pat-

tern affects the detectability of another visual pattern when they are superim-

posed over each other. Although it is not a perceptual metric per se, it can be

used to predict the effects of texture mapping on masking tesselation or the

effect of geometric complexity on masking rendering artifacts.

2.3 Applications of Perceptual Metrics

Bolin and Meyer [Boli98] and Myszkowski [Mysz98] relied on the use of

sophisticated perceptual metrics to estimate perceptual differences between

two images to determine the perceived quality at an intermediate stage of a

lighting computation. Based on perceptual quality, they determined the per-

ceptual convergence of the solution and used it as a stopping condition in

their global illumination algorithm. These metrics perform signal processing

on the two images to be compared, mimicking the response of the visual cor-

tex to spatial frequency patterns and calculating a perceptual distance

between the two images. Myskowski uses the Daly Visible Differences Pre-

dictor [Daly93] to determine the stopping condition of rendering by compar-

ing two images at different stages of the lighting solution. Bolin and Meyer

used a computationally efficient and simplified variant of the Sarnoff Visual
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Figure 2.3: Sarnoff Visual Discrimination Model (adapted from [Lubi95]).

The Sarnoff VDM processes two images using a series of spatial
decomposition filters and perceptual models to compute a Just-Noticeable-
Difference (JND) map. This map is a measure in perceptual space of the
perceptual “distance” between two images, and can be converted into a
probability of detection value in a similar manner as the Daly VDP.
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Discrimination Model [Lubi95] on an upper bound and a lower bound pair of

images to determine the stopping condition in their bounded-error, perceptu-

ally-guided algorithm. Both algorithms required repeated applications of the

perceptual error metric at intermediate stages of a lighting solution. The

repeated application of the metric added substantial overhead to the rendering

algorithm.

Ramasubramanian, et al., [Rama99] reduced the cost of such metrics by

decoupling the expensive spatial frequency component evaluation from the

perceptual metric computation. They reasoned that the spatial frequency con-

tent of the scene does not change significantly during the global illumination

computation step and, hence, precomputed this information from a cheaper

estimate of the scene image. They reused the spatial frequency information

during the evaluation of the perceptual metric, without having to recalculate

it at every iteration of the global illumination computation. They carried out

this pre-computation from the direct illumination solution of the scene. Their

technique does not take into account any sensitivity loss due to motion and

hence is not well suited for use in dynamic environments.

Myskowski, et al., [Mysz99] addressed the perceptual issues relevant to

rendering dynamic environments. They incorporated spatiotemporal sensitiv-

ity of the HVS into the Daly VDP [Daly93] to create a perceptually-based

Animation Quality Metric (AQM) and used it in conjunction with image-

based rendering techniques [McMi97] to accelerate the rendering of a key-

frame based animation sequence. Myskowski’s framework assumed that the

eye tracks all objects in a scene. The tracking ability of the eye is very impor-

tant in the consideration of spatiotemporal sensitivity [Daly98]. Perceptually-

based rendering algorithms which ignore this ability of the eye can introduce

perceptible error in visually salient areas of the scene. On the other hand, the
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most conservative approach of indiscriminate tracking of all the objects of a

scene, as taken by Myskowski’s algorithm, effectively reduces a dynamic

scene to a static scene, thus negating the benefits of spatiotemporally-based

perceptual acceleration. The use of AQM during global illumination compu-

tation will also add substantial overhead to the rendering process.

2.4 Our Approach

Our technique combines the best of existing algorithms by developing a

spatiotemporal error tolerance map, the Aleph Map, that takes into account

not only spatial information but temporal as well. It is quickly precomputed

from frame estimates of the animation to be rendered, and are estimates that

capture spatial frequency and motion correctly. We make use of fast graphics

hardware to obtain the Aleph Map quickly and efficiently. The map is correct

because it incorporates a model of visual attention in order to compensate for

the tracking ability of the eye.

The Aleph Map can be adapted for use as a physically-based error metric,

or as in our application, as an oracle that guides perceptual rendering without

the use of an expensive comparison operator. By using a perceptual oracle

instead of a metric, we incur negligible overhead while rendering. Our

approach will address the issue of overhead when using perceptual tech-

niques, as well as correctly accounting for the tracking ability of the eye.

The next chapter will develop the background material required to under-

stand the construction of the Aleph Map. It will discuss spatiotemporal sensi-

tivity in the context of perceptually-assisted rendering. The chapter will also

expound on the importance of visual attention with regards to dynamic

scenes and the tracking behavior of the eye in such scenes.



CHAPTER 3

Background

The cosmic [microwave] background radiation suffuses the entire universe -
Carroll & Ostlie, An Introduction to Modern Astrophysics

This chapter covers the background material relevant to this thesis. The

first part will review the spatiotemporal contrast sensitivity of the human

visual system and the second part will address the attention mechanisms of

the visual system.

3.1 Spatiotemporal Contrast Sensitivity

3.1.1 Contrast Sensitivity

The sensitivity of the Human Visual System (HVS) changes with the spa-

tial frequency content of the viewing scene. This sensitivity is psychophysi-

cally derived by measuring the threshold contrast for viewing sine wave

gratings at various frequencies [Camp68]. The Contrast Sensitivity Function

(CSF) is the inverse of this measured threshold contrast, and is a measure of

the sensitivity of the HVS towards static spatial frequency patterns. This CSF

function peaks between 4-5 cycles per degree (cpd) and falls rapidly at higher

frequencies. The reduced sensitivity of the HVS to high frequency patterns

allows the visual system to tolerate greater error in high frequency areas of
19
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rendered scenes and has been exploited extensively by [Boli95], [Boli98] ,

[Mysz98], [Mysz99] and [Rama99] in the rendering of static scenes contain-

ing areas of high frequency texture patterns and geometric complexity.

3.1.2 Temporal Effects

The HVS varies in sensitivity not only with spatial frequency but also

with motion. Kelly [Kell79] has studied this effect by measuring threshold

contrast for viewing travelling sine waves. Kelly’s experiment used a special

technique to stabilize the retinal image during measurements and therefore

his models use the retinal velocity, the velocity of the target stimulus with

respect to the retina. Figure 3.1 summarizes these measurements.

From the figure, we can see that the contrast sensitivity changes signifi-

cantly with the retinal velocity. Above the retinal velocity of 0.15 deg/sec, the

peak sensitivity drops and the entire curve shifts to the left. This shift implies

that waveforms of higher frequency become increasingly difficult to discern

as the velocity increases. At retinal velocities below 0.15 deg/sec the whole

sensitivity curve drops significantly. Speeds below 0.15 deg/sec are artificial

as the eye naturally drifts about randomly even when it is staring fixatedly at

a single point. The measurements also show that the sensitivity function

obtained at the retinal velocity of 0.15 deg/sec matched with the static CSF

function described earlier. This agrees with the fact that the drift velocity of a

fixated eye is about 0.15 deg/sec, and must be taken into account when using

Kelly’s measurement results in real world applications.
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Figure 3.1: Velocity Dependent CSF

Plotted from an equation empirically derived from Kelly’s sensitivity
measurements [Daly98]. The velocities v are measured in degrees/second.
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3.1.3 Eye Movements

The loss of sensitivity to high frequency spatial patterns in motion gives

an opportunity to extend existing perceptually-based rendering techniques

from static environments to dynamic environments. The eye, however, is able

to track objects in motion to keep objects of interest in the foveal region

where spatial sensitivity is at its highest. This tracking capability of the eye,

also known as smooth pursuit, reduces the retinal velocity of the tracked

objects and thus compensates for the loss of sensitivity due to motion. Figure

3.2 is a chart graphically portraying the tracking capabilities of the eye as the

speed of a target increases.

Measurements by Daly [Daly98] have shown that the eye can track targets

cleanly at speeds up to 80 deg/sec. Beyond this speed, the eye is no longer

able to track perfectly. The results of such measurements are shown in Figure

3.2. The open circles in Figure 3.2 show the velocity of the eye of an observer

in a target tracking experiment. The measured tracking velocity is on the ver-

tical axis while the actual target velocity is on the horizontal axis. The solid

line in Figure 3.2 represents a model of the eye’s smooth pursuit motion.

Evidently, it is crucial that we compensate for smooth pursuit movements

of the eye when calculating spatiotemporal sensitivity. The following equa-

tion describes a motion compensation heuristic proposed by Daly [Daly98]:

(3.1)

where vR is the compensated retinal velocity, vI is the physical velocity, vMin

is 0.15 deg/sec (the drift velocity of the eye), vMax is 80 deg/sec (which is the

maximum velocity that the eye can track efficiently). The value 0.82

accounts for Daly’s data fitting that indicates the eye tracks all objects in the

visual field with an efficiency of 82%. The solid line in Figure 3.2 was con-

vR vI min 0.82vI vMin+ vMax,( )–=
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structed using this fit. Use of this heuristic would imply only a marginal

improvement of efficiency in extending perceptual rendering algorithms for

dynamic environments, but our method offers an order of magnitude

improvement.

3.2 Visual Attention and Saliency

Though the eye’s smooth pursuit behavior can compensate for the motion

of the moving objects in its focus of attention, not every moving object in the

world is the object of one’s attention. The pioneering work of Yarbus

Figure 3.2: Smooth Pursuit Behavior of the Eye

The eye can track targets reliably up to a speed of 80.0 deg/sec beyond which
tracking is erratic. Reproduced from Daly [Daly98].
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[Yarb67] shows that even under static viewing conditions not every object in

the viewing field captures visual attention. If we can predict the focus of

attention, then other less important areas may have much larger error toler-

ances allowing us to save calculation time on those areas. To accomplish this,

we need a model of visual attention which will correctly identify the possible

areas of visual interest.

Visual attention is the process of selecting a portion of the available visual

information for localization, identification and understanding of objects in an

environment. It allows the visual system to process visual input preferentially

by shifting attention about an image, giving more attention to salient loca-

tions and less attention to unimportant regions. The scan path of the eye is

thus strongly affected by visual attention. In recent years, considerable efforts

have been devoted to understanding the mechanism driving visual attention.

Contributors to the field include Yarbus [Yarb67], Yantis [Yant96], Tsotsos,

et al. [Tsot95], Koch and Ullman [Koch85], Niebur & Koch [Nieb98].

Two general processes significantly influence visual attention, called bot-

tom-up and top-down processes. The bottom-up process is purely stimulus

driven. A few examples of such stimuli are: a candle burning in a dark room;

a red ball among a large number of blue balls; or sudden motions. In all these

cases the conspicuous visual stimulus captures attention automatically with-

out volitional control. The top-down process, on the other hand, is a directed

volitional process of focusing attention on one or more objects which are rel-

evant to the observer's goal. Such goals may include looking for street signs

or searching for a target in a computer game. Though the attention drawn due

to conspicuity may be deliberately ignored because of irrelevance to the goal

at hand, in most cases, the bottom-up process is thought to provide the con-
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text over which the top-down process operates. Thus, the bottom-up process

is fundamental to the visual attention.

We disregard the top-down component in favor of a more general and

automated bottom-up approach. In doing so, we would be ignoring non-stim-

ulus cues such as a “look over there” command given by the narrator of a

scene or shifts of attention due to familiarity. Moreover, a task driven top-

down regime can always be added later, if needed, with the use of supervised

learning [Itti99a].

Itti, Koch and Niebur [Itti00][Itti99a][Itti99b][Itti98] have provided a

computational model to this bottom-up approach to visual attention. The

model is built on a biologically plausible architecture proposed by Koch and

Ullman [Koch85] and by Niebur and Koch [Nieb98]. Figure 6 graphically

illustrates the model of visual attention. The figure, which illustrates an

abridged version of the process, is shown for the achromatic intensity chan-

nel. In the figure, feature maps, which represent zones of interest in a specific

channel at a specific scale, are combined to get a summary of interesting

areas in a specified channel at all scale levels called the conspicuity map. The

conspicuity maps of the channels of intensity, color, orientation and motion

are combined to obtain the saliency map. Bright regions on the maps denote

areas of interest to the visual system.

The computational architecture of this model is largely a set of center-sur-

round linear operations that mimic the biological functions of the retina, lat-

eral geniculate nucleus and primary visual cortex [Leve91]. The center

surround effect makes the visual system highly sensitive to features such as

edges, abrupt changes in color and sudden movements. This model generates

feature maps, using center surround mechanisms, for visually important

channels such as intensity, color and orientation. A feature map can be con-
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Figure 3.3: Outline of the Computational Model of Visual Attention
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sidered to represent the conspicuity at different spatial scales. Each of these

features for each of these channels is computed at multiple scales and then

processed with an operator, N(.), that mimics the lateral inhibition effect.

That is, features that are similar and near each other cancel each other out.

Feature maps that have outstanding features are emphasized while feature

maps which have competing features or no outstanding features are sup-

pressed. For example, a single white square in a dark background would be

emphasized, but a checkerboard pattern would be suppressed. The sum of the

feature maps for each channel after they have been processed for lateral inhi-

bition results in a conspicuity map. The conspicuity map for each channel are

processed themselves for lateral inhibition and then summed together to

obtain a single saliency map that quantifies visual attention. The model of

Itti, et al., has been tested with real world scenes and has been found to be

effective [Itti00].

The model of Itti, Koch and Niebur does not include motion as a conspi-

cuity channel. We include motion as an additional conspicuity channel in our

implementation. The next chapter describes the an overview of the process of

obtaining the Aleph map by building on the knowledge presented here.



CHAPTER 4

Framework

B’roshyth bara Elohiym et ha-shomayim v’et ha-aretz. (In the beginning God
created the heavens and the Earth). - first words in the Torah.

This chapter establishes the framework for calculating the Aleph Map.

Our process begins with a rapid image estimate of the scene. This image esti-

mate serves both to identify areas where spatiotemporal sensitivity is low and

also to locate areas where an observer will be most likely to look. Such an

image may be quickly generated using an Open GL rendering, or a ray traced

rendering of the scene with only direct lighting. We have typically used Open

GL to render estimates (one for each frame of the estimation) for our work

and use the estimate only for the computation of the Aleph Map and not for

the actual global illumination calculation.

Our computation proceeds in four major steps: 1) motion estimation, 2)

spatial frequency estimation, 3) saliency estimation and 4) computing the

Aleph Map. We will discuss each of these steps in detail in the following sec-

tion. Figure 4.1 depicts an overview of the process.

Motion estimation is used to calculate spatiotemporal sensitivity as well

as saliency. The motion estimate can be deduced from the way the geometry

is transformed or from how much pixels move from one frame or another.

The spatial frequency content of the scene is computed and used in both the

spatiotemporal sensitivity and the saliency calculation. Finally, the motion,
28
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Figure 4.1: Framework for Aleph Map Computation

An overview of the process to compute the Aleph Map is shown. The process
begins with an Image Estimate which is used to compute spatial frequency,
motion and saliency. The information is then combined to obtain the Aleph
Map, a representation of spatiotemporal sensitivity that also takes into
account the attention mechanisms of the visual system.
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spatial frequency and saliency are all combined to obtain the spatiotemporal

sensitivity which is adapted to a particular application. This application-

adapted spatiotemporal sensitivity is called the Aleph Map. We will now pro-

ceed with the implementation details in calculating the Aleph Map.



CHAPTER 5

Implementation

V’omer Elohiym hayah ohr v’hayah ohr. (And God said, "Let there be light,"
and there was light) - Biblical Universe Implementation

This chapter goes into detail on the computation steps required to derive

the Aleph Map. The prerequisite for the computation is a series of consecu-

tive image frames that are estimates of the animation to be rendered. These

images are used to estimate motion, spatial frequency and saliency, the ingre-

dients needed for calculating spatiotemporal sensitivity. An example of two

kinds of image estimates are shown in Figure 5.1. As can be seen in the fig-

ure, the Open GL image estimate captures the relevant spatial frequency and

color information in a scene prior to rendering, while the ray traced image

estimate captures shadow effects as well. However, the ray traced image can

be expensive to calculate in comparison to the Open GL image estimate.

Before they are used, the image estimates are converted from RGB into

AC1C2 opponent color space, using the transformation matrices given in

[Boli95]. The color space conversion facilitates the computation of visual

saliency. We use the following notation in our description. A capital letter

such as ‘A’ or ‘C1’ or ‘C2’ denotes a channel and a number in parenthesis

denotes the level of scale. Thus, ‘A(0)’ would correspond to the finest scale
31
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Figure 5.1: Image Estimates

Image (a) is an Open GL Image estimate (generated in less than a second)
and (b), a ray traced image estimate (generated in 5 minutes).
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of a multiscale decomposition of the achromatic channel of the AC1C2 color

space. For conciseness, a per-pixel operation, e.g. A(x,y), is implied.

5.1 Motion Estimation

The velocity of pixels in the image plane is needed to estimate both spa-

tiotemporal sensitivity and visual attention. We implemented two different

techniques to estimate image plane velocity. One makes use of the image

estimate alone and the other makes use of additional information such as

geometry and knowledge of the transformations used for movement. The lat-

ter model is appropriate for model-based image synthesis applications while

the former can be used even when only the image is available, as in image-

based rendering. In both of these techniques, the goal is first to estimate dis-

placements of pixels ∆P(x,y) from one frame to another, and then to compute

the image velocity from these pixel displacements, using frame rate and pixel

density information.

5.1.1 Image-based Motion Estimation

Image-based motion estimation is useful when the geometry and their

transforms are not directly available, such as when the source data consists of

only image frames. In such cases, the pixel displacement can be obtained by

tracking the motion of pixels from one frame to another. Figure 5.2 shows

how image-based motion estimation works in general.

In the figure, points in Frame N are tracked in Frame N+1 by searching

for their new locations around the neighborhood of the points. This is usually

achieved by minimizing the sum of squared differences between the region
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around the pixel in Frame N and the target search region in Frame N+1. In

effect, we are calculating the pixel displacements which, when applied to

Frame N, will give an image that has the smallest differences from Frame

N+1. We now describe a faster, hierarchical variant of the above scheme that

uses a logical operator instead of pixel differences to search for pixel dis-

placements.

In this hierarchical, image-based motion estimation technique, the achro-

matic ‘A’ channels of two consecutive image frames are decomposed into

multiscale Gaussian pyramids using the filtering method proposed by Burt

and Adelson [Burt83]. The Gaussian filtered images are then processed by

the census transform [Zabi94], a local transform that is used to improve the

robustness of motion estimation. The census transform generates a bitstring

for each pixel that is a summary of the local spatial structure around the pixel.

The bits in the bitstring correspond to the neighboring pixels of the pixel

under consideration. The bit is set to 0 if the neighboring pixel is of lower

Figure 5.2: Image-based Motion Estimation

Each pixel in Frame N is tracked using pattern matching algorithms to their
new locations in Frame N+1. The resulting displacement information,
combined with knowledge of frame rate and pixel density, results in the
actual speed of the pixels across the image plane.

Frame N + 1Frame N
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intensity than the pixel under consideration. Otherwise, it is set to 1. Figure

5.3 illustrates the Census Transform.

In the example given above, the pixel with value ‘5’ and its surrounding

neighbors are shown. The census transform replaces the pixel value ‘5’ with

the bitstring ‘00110110’ representing the relative intensity changes in its

neighborhood. Thus, the census transform represents the spatial structure of

the surrounding pixels at a particular point. Performing the census transform

allows us to find correspondences in the two images by capturing both inten-

sity and local spatial structure. It also makes motion estimation effective

against exposure variations between frames (if a real world photograph was

used). Comparisons can then be made between regions of census transformed

images by calculating the minimum Hamming distance between two bit

strings being compared. The Hamming distance of two bit strings is defined

as the number of bits that are different between the two strings and can be

implemented efficiently by eXclusive-ORing the two strings together and

Figure 5.3: Census Transform

The intensity values of the central pixel ‘5’ and its neighbors are compared.
Every neighbor with an intensity less than 5 will be given a 0, otherwise it is
given a 1. The central pixel (‘5’) after undergoing the census transform will
contain the bitstring ‘00110110’ which represents the spatial structure around
the pixel.
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counting the number of ‘1’ bits. For example, the Hamming distance of

“1110” and “1011” is 2 because the second and fourth bits are different.

Counting the “1”s after an exclusive-or operation gives us the Hamming dis-

tance of two bit strings directly.

The census transform is now applied to levels A(0,1,2) of the achromatic

Gaussian pyramid. The three levels were picked as a trade-off between com-

putational efficiency and accuracy. An exhaustive search would be most

accurate but slow, and a hierarchical search would be fast but inaccurate. To

take advantage of speed and accuracy, we use both kinds of searches at differ-

ent levels of the pyramid. We perform an exhaustive search on the census

transformed A(2), which is cheap due to its reduced size (128x128 for a

512x512 image), to figure out how far pixels have moved between frames. In

our implementation, a pixel in level A(2) of frame N is searched for in level

A(2) of frame N+1 with a search window of radius 8. The pixel is assumed to

have moved at most 8 pixels to the left, right, up or down from its initial loca-

tion in frame N. This search operation is carried out by finding the pixel dis-

placement that minimizes the Hamming distance between the Frame N pixel

and the Frame N+1 pixel. Figure 5.4 is a diagram showing how an exhaustive

search is performed. For simplicity, only per pixel Hamming distance com-

parisons are shown. In the actual implementation, the Hamming distance is

computed as the sum of Hamming distances in a 3x3 region around the initial

and target pixels, as it was found to give a better displacement result.

Subsequently, the displacement information is propagated to level 1 and a

three-step search heuristic (page 104 of [Teka95]) is used to refine displace-

ment positions iteratively. Figure 5.5 shows the progress of a three-step

search routine. The three-step heuristic is a search pattern that begins with a

large search radius that reduces up to three times until a likely match is
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found. In each step of the search, 9 pixels, including the center pixel, is

checked for the closest match using the Hamming distance metric to compare

the census transformed pixels. The results of level 1 is propagated to level 0

and a three-step search again conducted to get our final pixel displacement

value. Each three-step search operation will look for matches in a neighbor-

hood of radius 7 (4+2+1) around the original pixel location. Since the search

is performed in a hierarchical manner, the total search radius at the resolution

of the actual image (level 0) is 7+2*(7+2*8)= 53 pixels. The values come

from a radius of 8 from the exhaustive search and a radius of 7 from the

Figure 5.4: Exhaustive Search

In the exhaustive search algorithm, a pixel from Frame N is searched for a
match in Frame N+1 by applying the Hamming distance operator to each
pixel over a search region until the pixel in Frame N+1 with the smallest
Hamming distance is found (dark arrow). In this diagram the search region is
a 3x4 pixel window. In our implementation, the search region is 17x17 pixels
wide (corresponding to a radius of 8 pixels).

Frame N, Level A(2) Frame N+1, Level A(2)
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three-step searches. Each level is finer that the previous by a factor of two,

which is why the effective radius is doubled when the displacement informa-

tion is propagated to a finer level of the pyramid. The search radius is suffi-

cient to capture the displacement of all but the fastest moving objects. Should

a larger search radius be desired, one may opt to use a larger search radius

when performing the exhaustive search step. The resulting displacement

information will then be propagated to the finer levels of the pyramid. In

effect, the pixel displacement we want, ∆P(x,y), is the displacement that min-

imizes the Hamming Distance between a pixel in Frame N, P(x,y), and

another pixel in Frame N+1, P(x,y)+∆P(x,y).

Figure 5.5: Three-step Search

The search pattern for the Three-step Search heuristic is shown. The search
begins at the locations marked ‘1’ and the most likely candidate’s
neighborhood is searched in a recursive manner with a shrinking
neighborhood ‘2’, ‘3’ until the final match is found.
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One drawback of using an image-based technique is that the algorithms

cannot calculate pixel disparities across regions of uniform color. However, it

can be used in applications that do not have geometry information readily

available. The following model-based motion estimation techniques is unaf-

fected by the lack of textures and is less noisy than image-based techniques,

but requires knowledge of the underlying geometry of the scene and its trans-

formations.

5.1.2 Model-based Motion Estimation

When we know the geometry and transformations of each object in the

scene, we can use model-based motion estimation (Agrawala, et. al.

[Agra95]). In this motion estimation technique, no searching is performed.

Instead, the pixel displacements are calculated by direct projection from the

viewing plane (frame N), to the object, and then to the next viewing plane

position (frame N+1). Thus, the running time of this motion estimation tech-

nique is proportional to the number of polygons in the geometrical database.

We begin by obtaining an object identifier and point of intersection on the

object for every pixel in frame N, using either ray casting or using OpenGL

hardware projection.

When ray casting is used, each pixel in frame N is projected from the

camera’s center of projection onto objects in world space and the Q(u,v,t)

parametric coordinates of the object intersection is recorded. OpenGL may

also be used to estimate motion via a two pass technique [Hanr90]. In the first

pass, an Identifier (ID) Map is created by rendering each primitive in the

scene with a unique color. This enables us to determine the objects struck by

the projected pixels. In the second pass, a UV Map is generated that contains
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the barycentric u and v coordinates of each triangle. This UV map is com-

puted by rendering each primitive with a texture map that has a red ramp in

the horizontal direction and a green ramp in the vertical direction. UV coordi-

nates are recovered from the color channels when the UV Map is drawn.

Using the ID Map and the UV Map, we know the approximate projected

location of a pixel onto an object in world space. With either technique, we

now know for every pixel in the viewing plane, P(x,y), the projected intersec-

tion point with each object in frame N, Q(u,v,N).

Next, we advance to Frame N+1, and apply the appropriate motion trans-

formations to Q(u,v,N), and project each point Q(u,v,N+1) onto the viewing

plane corresponding to the (N+1)th frame to obtain P(x’,y’). The distance of

pixel movement is the displacement needed for calculating the image veloc-

ity. Figure 5.6 illustrates the model-based motion estimation procedure.

In the figure, each pixel P(x,y) in the viewing plane in Frame N is tracked

to its intersection point in object space, Q(u,v,N). For static objects,

Q(u,v,N)=Q(u,v,N+1). For moving objects, like the moving ball shown, the

appropriate motion transformation is applied to the object and to obtain

Q(u,v,N+1). The point Q(u,v,N+1) is reprojected onto the new viewing plane

for Frame N+1 to location P(x’,y’). The reprojection takes into account

motion due to camera movements. The pixel displacement is the difference

between the old and new locations ∆P(x,y)=P(x,y)-P(x’,y’).

In our implementation, the Open GL projection technique runs faster than

the ray casting projection technique (seconds vs tens of seconds). However,

Open GL projection has a few problems. One of them is the resolution of the

UV Map. Since the (u,v) coordinates are encoded in the color channel, there

are only 256 possibilities for each coordinate. This could lead to discretiza-

tion artifacts if the triangle spanned more than 256 pixels on the viewing
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plane. Discretization errors could also lead to incorrect displacement calcula-

tions.

For the sake of simplicity, the motion maps we use for computing spa-

tiotemporal sensitivity will be derived from ray casting, model-based motion

estimation. Figure 5.7 compares image-based and ray casting, model-based

motion estimation techniques.

Figure 5.6: Model-based Motion Estimation

Each pixel P(x,y) on the viewing plane in Frame N is tracked to a
corresponding object intersection location Q(u,v,N). The appropriate motion
transformation is applied to derive Q(u,v,N+1) which is then projected onto
the new viewing plane to obtain P(x’,y’). From P(x,y) and P(x’,y’) we can
calculate the pixel displacement from one frame to another.

World Space

Viewing Plane, Frame N

Viewing Plane, Frame N + 1

Q(u,v,N+1)

Step 1: Find each pixel’s
intersection point

Step 3: Project onto new
viewing plane

P(x,y)

P(x’,y’)

Q(u,v,N)

Step 2: Apply object movement
transformations (rotations/
translations)

Center of
Projection

Center of
Projection

Screen Space
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Figure 5.7: Comparison of Image-Based and Model-Based Motion
Estimation

Two consecutive frames (a) and (b) are shown with the boomerang moving to
the right from (a) to (b). The motion-blurred image in (c) shows the direction
of motion. The results obtained using image-based motion estimation is
shown in (d) and using ray casting, model-based motion estimation is shown
in (e). For (d) and (e), the bright regions correspond to pixels of greater
movement and the dark areas correspond to pixels that do not move. In (d),
two copies of the boomerang appear because the image based motion
estimation technique does not know if the boomerang is moving from left to
right or if the disoccluded background is moving from right to left. Model-
based motion estimation (e) is less noisy and more accurate than image-based
motion estimation (d), which explains why (e) has a smooth motion
estimation and (d) has a splotchy motion estimation.
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5.1.3 Pixel Displacements and Motion

Using either image-based or model-based motion estimation, we have the

pixel displacements ∆P(x,y) that tell us how much pixels move from one

frame to another. However, the quantity we need for the sensitivity and

saliency calculations is the image plane velocity. We convert the pixel dis-

placements ∆P(x,y) computed by either of the two techniques into image

plane velocities vI(x,y) using the following equation.

(5.1)

In our implementation, values were 30 frames per second on a display

with a pixel density of 31 pixels per degree.

5.2 Spatial Frequency Estimation

Another component needed to calculate spatiotemporal error sensitivity is

the spatial frequency content of the scene. The Fast Fourier Transform is usu-

ally used to obtain the frequency components of a signal but we have opted to

use the faster Difference-of-Gaussians (Laplacian) Pyramid approach of Burt

and Adelson [Burt83] to estimate spatial frequency content. One may reuse

the Gaussian pyramid of the achromatic channel if it was computed in the

image-based motion estimation step. Otherwise, the Gaussian pyramid is

constructed by convolving the luminance channel of the image estimate with

the separable filter {0.05,0.25,0.4,0.25,0.05}, downsampling by a factor of 2

and repeating the process as necessary. Each level of the Gaussian pyramid is

upsampled to the size of the original image and then the absolute difference

vI x y,( ) P x y,( )∆
Pixels Per Degree
------------------------------------------- Frames per Second⋅=
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of the levels is computed to obtain the seven level bandpass Laplacian pyra-

mid, L(0) to L(6).

(5.2)

The Laplacian pyramid has peak spatial frequency responses at ρi = {16,

8, 4, 2, 1, 0.5, 0.25} cpd (assuming a pixel density of approximately 31 pixels

per degree). Figure 5.8 graphically depicts one step of the Laplacian Pyramid

calculation.

Using a method similar to that followed by Ramasubramanian, et al.,

[Rama99], each level of the Laplacian pyramid is then normalized by sum-

ming all the levels and dividing each level by the sum to obtain the estimation

of the spatial frequency content in each frequency band:

(5.3)

5.3 Saliency Estimation

The saliency estimation is executed using an extension of the computa-

tional model developed by Itti, et al., [Itti00][Itti98]. Our extension incorpo-

rates motion as an additional feature channel. The saliency map indicates

locations of increased attention and is computed via the combination of four

conspicuity maps of intensity, color, orientation and motion. The conspicuity

maps are in turn computed using feature maps at varying spatial scales. One

may think of features as stimuli at varying scales, conspicuity as a summary

of a specific stimulus at all the scale levels combined and saliency as a sum-

mary of all the conspicuity of all the stimuli combined together. Figure 5.9

L i( ) A i( ) A i 1+( )–=

Ri
L i( )

L j( )
all levels j
�

-----------------------------=
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documents the flow of computation from the image estimate to the saliency

map.

Feature maps for the achromatic (A) and chromatic (C1,C2) channels are

computed by constructing image pyramids similar to the Laplacian pyramid

described in the previous section. A Gaussian pyramid is constructed for each

Figure 5.8: Difference of Gaussians Operation

A single step of the Difference-of-Gaussians operation is shown. The
achromatic luminance channel of the Image, A(0), is Gaussian filtered and
then upsampled before an absolute difference is taken. The resulting image is
the finest level of the Laplacian Pyramid, L(0).

A(0) A(1)Gaussian Filter

L(0)
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Figure 5.9: Saliency Map Computation

A flowchart of the Saliency Map computation process.
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channel and following Itti, et al., we obtain the feature maps in the following

manner:

(5.4)

where X stands for A,C1,C2 and (center,surround) ∈ {(2,5), (2,6), (3,6), (3,7),

(4,7), (4,8)}. The numbers correspond to the levels in the Laplacian pyramid.

Motion feature maps are created by applying a similar decomposition to

the velocity map generated in the motion estimation section.

Orientation feature maps are obtained by creating four pyramids using

Greenspan’s [Gree94] filter on the achromatic channel. Greenspan’s filter

was tuned to orientations of (0, 45, 90 and 135 degrees) and indicates what

components of the image lie along those orientations. We generate a total of

48 feature maps, 6 for intensity at different spatial scales, 12 for color, 6 for

motion, and 24 for orientation for determining the saliency map. The feature

maps are a multiple of six due to the number of combinations of center-sur-

round operations in Equation 5.4.

Next, we combine these feature maps to get the conspicuity maps and then

combine the conspicuity maps to obtain a single saliency map for each image

frame. We use a global non-linear normalization operator, N(.), described in

[Itti98] to simulate lateral inhibition and then sum the maps together to per-

form this combination. This operator carries out the following operations:

1. Normalize each map to the same dynamic range, e.g. (0..1).

2. Find the global maximum M and the average m of all other local max-

ima. Local maxima are defined as pixels whose values are greater than pixels

in its immediate neighborhood.

3. Scale the entire map by (M-m)2.

X center
·

surround,( ) X center( ) X surround( )–=
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The purpose of the N(.) operator is to promote maps with significantly

conspicuous features while suppressing those that are non-conspicuous. Fig-

ure 5.10 illustrates the action of the N(.) operator on three generic maps.

We apply the N(.) operator to each feature map and combine the resulting

maps of each channel’s pyramid into a conspicuity map. We now get the four

conspicuity maps of intensity, color, orientation and motion. We then com-

pute the saliency map by applying N(.) to each of the four conspicuity maps

and then summing them together. We will call the saliency map S(x,y) with

the per pixel saliency normalized to a range of (0.0... 1.0) where one repre-

sents the most salient region and zero represents the least salient region in the

image. Figure 5.11 shows the saliency map computed for one of the anima-

tion image frames.

Figure 5.10: Action of the N(.) Operator

The left half (a) shows the maps after step 1. The right half (b) shows the
maps after steps 2 and 3. Map A and C have competing signals and are
suppressed. Map B has a clear spike and is therefore promoted. In this way,
the N(.) operator roughly simulates the lateral inhibition behavior of the
visual system. When N(.) is applied to feature maps, A,B,C represent the
levels of the corresponding Laplacian pyramid of the feature. When applied
to conspicuity maps, A,B and C represent channels such as intensity or color.

A B C N(A) N(B) N(C)

Before N(.) Operator (a) After N(.) Operator (b)
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Figure 5.11: Saliency Map Visualization

In image (a) the yellow and blue top on the left is spinning rapidly. The
computed saliency map is shown in (b) and (c) graphically depicts the
modulation of the saliency map with the image. Brighter areas denote areas
of greater saliency. Attention is drawn strongly to the spinning top, the
paintings, the ceiling sculpture, the area light and the couch. These areas
undergo strict motion compensation. The floor and ceiling are not as salient
and undergo less compensation.

Image (a) Saliency Map (b)

Superimposed (c)



50
5.4 Spatiotemporal Error Sensitivity Computation

At this stage, we will have the weights for spatial frequency from the

bandpass responses Ri(x,y) (Equation 5.4) with peak frequencies ρi =

{16,8,4,2,1,0.5,0.25} cycles per degree, the image plane pixel velocities

vI(x,y) (Equation 5.1), and the saliency map S(x,y). We now have all the nec-

essary ingredients to estimate the spatiotemporal sensitivity of the HVS. The

first step is to obtain the retinal velocity vR from the image plane velocity vI

with the use of the saliency map S(x,y) to modulate image plane velocity:

(5.5)

where vMin is the drift velocity of the eye (0.15 deg/sec [Kell79]) and vMax is

the maximum velocity beyond which the eye cannot track moving objects

efficiently (80 deg/sec [Daly98]). We use this velocity to compute the spa-

tiotemporal sensitivities at each of the spatial frequency bands ρi. For this

computation, we use Kelly’s experimentally derived contrast sensitivity func-

tion (CSF):

(5.6)

(5.7)

(5.8)

Following the suggestions of Daly [Daly98], we set c0=1.14, c1=0.67 and

c2=1.7. These parameters are tuned to CRT display luminance of 100 cd/m2.

Contrast sensitivity is the inverse of threshold contrast. Therefore, the

inverse of the CSF intuitively gives us an elevation factor that increases our

tolerance of error beyond the minimum discernible luminance threshold in

optimal viewing conditions. We calculate this elevation factor for each of the

vR x y,( ) vI x y,( ) min S x y,( ) vI x y,( )⋅ vMin+ vMax,( )–=

CSF ρ vR,( ) k c0 c2 vR 2πρc1( )2
e

4πc1ρ( ) ρmax⁄–
⋅ ⋅ ⋅ ⋅ ⋅=

k 6.1 7.3 c2 vR⋅( ) 3⁄( )log
3

+=

ρmax 45.9( ) c2 vR⋅ 2+( )⁄=
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peak spatial frequencies of our Laplacian pyramid ρi ∈ {16,8,4,2,1,0.5,0.25}

cpd:

(5.9)

(5.10)

where vR is the retinal velocity, CSF is the spatiotemporal sensitivity func-

tion, CSFMax(vR) is the maximum value of the CSF at velocity vR, and ρmax

is the spatial frequency at which this maximum occurs.

Finally we compute the Aleph Map, the spatiotemporal error tolerance

map, as a weighted sum of the elevation factors fi, and the frequency

responses Ri at each location (x,y):

(5.11)

The computation of Equations 5.9 - 5.11 are similar to the computation of

the threshold elevation map described in [Rama99] with the difference that

the CSF function used here is the spatiotemporal CSF instead of the spatial

only CSF. Figure 5.12 shows the error tolerance map ℵ (x,y) for an image

frame of a dynamic scene. This map captures the sensitivity of the HVS to

the spatiotemporal contents of a scene. ℵ (x,y) has values ranging from 1.0

(lowest tolerance to error) to at most 250.0 (most tolerance to error). The

value ℵ (x,y) represents the contrast elevation factor due to spatial and tem-

poral frequencies that increases the contrast needed to discern a signal from

the background.

The next chapter will demonstrate how the Aleph Map can be adapted for

use in accelerating global illumination.

fi ρi vR,( )
CSFMax vR( )
CSF ρi vR,( )
------------------------------ if ρi ρmax>( )

1.0 otherwise

=

CSFMax vR( )
ρMax

2πc1
------------=

ℵ x y,( ) Ri fi×
i
�=
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Figure 5.12: Spatiotemporal Error Sensitivity Visualization

Image (a) and its corresponding error tolerance map, the Aleph Map (b). Note
that the spinning top in the bottom right has reduced tolerance to error
although it has textures and is moving. This is due to the information
introduced by the saliency map, telling the algorithm to be stricter on the top
because the viewer will more likely focus attention there. The red beams are
treated strictly because there are no high frequency details.

Image (a)

Aleph Map (b)



CHAPTER 6

Applications & Results

"If you want to make an apple pie from scratch, you must first create the uni-
verse." - Carl Sagan

6.1 Application to Irradiance Caching

The Aleph Map developed in the previous sections is general. It operates

on image estimates of any animation sequence to predict the relative error

tolerance at every location of the image frame and can be used to efficiently

render dynamic environments. Similar to earlier perceptually-based accelera-

tion techniques [Boli95][Boli98][Mysz98][Rama99], we can use this map to

adaptively stop computation in a progressive global illumination algorithm.

On the other hand, we can also use the map as a perceptual oracle to specify

in advance the amount of computation to apply to a lighting problem. To

demonstrate the wider usefulness of this map we have applied the map to

improve the computational efficiency of irradiance caching, the key algo-

rithm behind the widely used program RADIANCE.

The irradiance caching algorithm is the core technique used by RADI-

ANCE to accelerate global illumination and is well documented by Ward

[Ward88][Ward92][Ward98]. As suggested by its name, the irradiance cach-

ing technique works by caching the diffuse indirect illumination component

of global illumination [Ward88]. A global illumination lighting solution can
53
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be calculated as the sum of a direct illumination term and an indirect illumi-

nation term. Indirect illumination is by far the most computationally expen-

sive portion of the calculation, and is usually computed using Monte Carlo

evaluation of thousands of light samples. Irradiance caching addresses this

problem by reusing irradiance values from nearby locations in object space

and interpolating them, provided the error that results from doing so is

bounded by the evaluation of an ambient accuracy term. Hence, by reusing

information, the irradiance caching algorithm is faster than the standard

Monte Carlo simulation of the global illumination problem by several orders

of magnitude, while at the same time providing a solution that has bounded

error.

Figure 6.1 diagrams the operation of the irradiance cache. In the figure,

E1 and E2 are irradiance values that were calculated previously and stored in

the cache. Each irradiance value has a radius within which it is valid. This

radius is determined from the ambient accuracy term and the harmonic dis-

tance of the location of the irradiance value from the other surfaces around it.

When a nearby irradiance value is needed, the cache is checked to determine

if there are irradiances in it that can be used to interpolate the new irradiance.

In the figure, test points A and B lie within one or more stored irradiance val-

ues and can be calculated from interpolation. On the other hand, test point C

lies outside of the valid radius of any irradiance value and must be calculated

by Monte Carlo evaluation. After being computed, the irradiance at test point

C is stored in the irradiance cache for future use.

A new irradiance value E at a point P can be computed from cached irradi-

ance values in the following manner [Ward98]:
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(6.1)

where

(6.2)

(6.3)

Figure 6.1: Irradiance Cache

Indirect irradiances E1 and E2 were calculated previously and stored in the
irradiance cache, together with their validity radii. Test points A and B are
close enough to existing cache values to be computed via extrapolation
(Equation 6.1), but point C requires the calculation of a new irradiance value.
Modified from [Ward98].
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(6.4)

(6.5)

(6.6)

Equation 6.2 is the inverse of the error term derived from modeling the

error on a sphere that is lit on one side and dark on the other. This ‘split

sphere’ error models the worst error that can occur when using irradiance

interpolation. The inverse of the error term is used to weight the irradiance

cache values in order to derive the extrapolated irradiance value. Note that

the error is a function of the distance of the cache value from the test location

as well as the orientation of the cache value with respect to the surface nor-

mal at the test location. The ambient accuracy term, αAcc, is user supplied

and provides a control on the error allowed for indirect illumination by pick-

ing the valid irradiance cache values for extrapolation in Equation 6.6. The

ambient accuracy term varies from 0.0 (no interpolation, purely Monte Carlo

simulation) to 1.0 (maximum ambient error allowed). The as αAcc get

smaller, the set S reduces in the number of elements it contains until it

becomes an empty set, whereupon Monte Carlo evaluation is used to com-

pute the irradiance value. In the implementation of irradiance caching, αAcc

is also used to modulate the domain of influence of the irradiance value.

Smaller values of αAcc reduce the radius over which the cached irradiance

value is valid.

RADIANCE uses the ambient accuracy term uniformly over the entire

image, and thus does not take advantage of the variation of sensitivity of the

HVS over different parts of the image. Our application of the Aleph Map to

Ei P( ) computed illuminance at Pi extrapolated to P=

Ri harmonic mean distance to objects visible from Pi=

S i wi P( ) 1
αAcc
----------->� | �=
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the irradiance caching algorithm works by modulating the ambient accuracy

term on a per pixel basis. Hence, wherever the Aleph Map allows for greater

error for that pixel, a larger set of irradiance values are considered for inter-

polation, making efficient use of the irradiance cache. In order to use the

Aleph Map with the irradiance cache we need to use a compression function

to map the values of ℵ (x,y) onto (αAcc -1.0) for use as a perceptual ambient

accuracy term. The following equation accomplishes this compression:

(6.7)

where α1 is the adapted map used in lieu of the original ambient accuracy

term αAcc. Figure 6.2 plots a graph of the compression function. The equa-

tion is a heuristic that ensures α1 is bounded between αAcc and 1.0. Hence, in

regions where attention is focused and where there are no high frequencies to

mask errors, α1=αAcc and in areas where the errors will be masked, α1

asymptotically approaches 1.0. Computation of α1 is carried out only once, at

the beginning of the global illumination computation of every frame. How-

ever, should a stricter bound be desired, one may opt to recompute ℵ (x,y)

and hence recompute α1 at intermediate stages of computation.

A simpler heuristic can also be used to convert ℵ (x,y) into a form usable

by irradiance caching by simple scaling and adding:

(6.8)

where K is some suitable constant that scales ℵ (x,y). Since the maximum

value of the CSF is about 250, one may chose K=250, or in our case, K=100.

Note that using this scaling and adding heuristic, there is no guarantee that α2

is bounded by 1.0 from above.

α1 x y,( ) ℵ x y,( )

ℵ x y,( ) 1–
1

αAcc
-----------+

---------------------------------------------=

α2 αAcc
ℵ
K
----+=
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A dynamic simulation of a pool ball collision was used to select a suitable

heuristic to convert Aleph Map values into ambient accuracy values. Figure

6.3 shows the performance speedups on a the pool table sequence rendered at

8192 samples per irradiance value with a base ambient accuracy of αAcc=0.1.

In the figure, full refers to the full motion compensation heuristic in Equa-

tion 3.1 (page 22). Saliency refers to the saliency map based motion compen-

sation heuristic in Equation 5.5 (page 50). In either case, the appropriately

compensated image plane velocity is used to derive the Aleph Map and an

adapter function is used to convert Aleph Map values into a perceptually-

based ambient accuracy term. The compressive function (Equation 6.7) pro-

Figure 6.2: Compression Function

The compression function (Equation 6.7) maps the contrast values of the
Aleph Map onto the range of (αAcc to 1.0) for use as a perceptually-based

ambient accuracy term.
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vides a better speedup in irradiance caching over the scale/add function

(Equation 6.8) when used to transform Aleph Map values to a perceptually

based ambient accuracy term. In subsequent uses of the Aleph Map in irradi-

ance caching, the compressive function in Equation 6.7 will be used in favor

of the scale/add function for calculating the perceptually based ambient accu-

Figure 6.3: Pool Sequence Performance Data

The speedups are relative to a reference solution rendered with 8192 samples
per irradiance value with a base ambient accuracy of 0.1. Full refers to the
full motion compensation heuristic which assumes that the eye tracks
everything equally well (Equation 3.1, page 22). Saliency refers to using the
saliency map to determine the eye’s tracking velocity (Equation 5.5,
page 50). Compression is the heuristic in Equation 6.7, and Scale/Add is the
heuristic in Equation 6.8.
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racy term. Figure 6.4 demonstrates the visual performance of the compres-

sive function on the pool table sequence.

We further demonstrate the performance of our enhancement using a test

scene of a synthetic art gallery. The scene contains approximately 70,000

primitives and eight area light sources. It contains many moving objects,

including bouncing balls, a spinning top and a kinetic sculpture that demon-

strates color bleeding on a moving object. Figures 6.5 to 6.9 show a visual

comparison of a reference solution and it’s corresponding Aleph Map accel-

erated solution. In the figures, the reference solution was rendered with 8192

samples per irradiance value and a base ambient accuracy of 0.15. The Aleph

Map accelerated solution was rendered using Saliency based motion compen-

sation and uses the compression function (Equation 6.7) to map Aleph Map

values onto a perceptually-based ambient accuracy term. Speedups of an

order of a magnitude were achieved. The reference solution takes between

four to six hours per frame to compute while the Aleph Map solution takes

between 20 minutes to an hour to compute. Times are for a single 550 MHZ

Pentium III quad processor node.

Figure 6.10 shows the performance improvement resulting from the use of

the Aleph Map on the Art Gallery sequence. The figure compares the perfor-

mance, as measured in sampling efficiency, compared to irradiance caching.

Spatial factors only indicate that the scene was rendered with an Aleph Map

using image plane velocities that were set to zero. Full motion compensation

indicates that the scene was rendered with the Aleph Map’s velocity compo-

nent motion compensated using Daly’s equation (Equation 3.1, page 22).

Aleph Map indicates that the scene was rendered using an Aleph Map with

image plane velocities compensated using the Saliency map. The spatial only,

full compensation and Aleph Map images were rendered at a resolution of



61
Figure 6.4: Pool Sequence Visual Comparison

The left column displays a few frames of the reference solution from the Pool
sequence. The middle column shows images derived using full motion
compensation and the compressive function (Equation 6.7) that maps the
Aleph map to a per-pixel perceptually-based ambient accuracy term. The
right column shows images derived using Saliency-based motion
compensation and the same compressive function (Equation 6.7).

Reference Full
Compensation

Saliency Map
Compensation
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Figure 6.5: Art Gallery, Frame 0.

Comparison between a reference solution (above) and the Aleph Map
accelerated version (below). The Aleph Map accelerated irradiance cache
performs seven times better than the reference solution in this frame.

Reference

Aleph Map Accelerated Solution
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Figure 6.6: Art Gallery, Frame 180.

Comparison between a reference solution (above) and the Aleph Map
accelerated version (below). The Aleph Map accelerated irradiance cache
performs eight times better than the reference solution in this frame.

Reference

Aleph Map Accelerated Solution
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Figure 6.7: Art Gallery, Frame 300.

Comparison between a reference solution (above) and the Aleph Map
accelerated version (below). The Aleph Map accelerated irradiance cache
performs 11 times better than the reference solution in this frame.

Reference

Aleph Map Accelerated Solution
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Figure 6.8: Art Gallery, Frame 540.

Comparison between a reference solution (above) and the Aleph Map
accelerated version (below). The Aleph Map accelerated irradiance cache
performs nine times better than the reference solution in this frame.

Reference

Aleph Map Accelerated Solution
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Figure 6.9: Art Gallery, Frame 720.

Comparison between a reference solution (above) and the Aleph Map
accelerated version (below). The Aleph Map accelerated irradiance cache
performs seven times better than the reference solution in this frame.

Reference

Aleph Map Accelerated Solution
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Figure 6.10: Speedup over Irradiance Cache for the Art Gallery sequence.

The total number of ray triangle intersections per pixel are compared. The
Aleph Map enhanced irradiance cache performs significantly better (6-8x)
than the unaugmented irradiance cache. Spatial factors contribute to an
average of 2x speedup while full motion compensation gives marginally
better results. These speedup factors are multiplied to the speedups provided
by irradiance caching, a technique far faster than straight Monte Carlo
pathtracing. Image frames were computed using an ambient accuracy setting
of 15% and an ambient sampling density of 2048 samples per irradiance
value at a resolution of 512x512. For comparison purposes, a reference
solution and a perceptually accelerated solution are rendered at a higher
resolution (640x480) and a sampling density of 8192 samples per irradiance
value (Aleph Map Hi Res). As seen on the graph (Aleph Map vs. Aleph Map
Hi Res), the acceleration is largely independent of the number of samples
shot, because the perceptual solution changes only the spacing of the samples
but not the sampling density. The reference solution takes between four to six
hours to compute.The Aleph Map solution takes between 20 minutes to an
hour to compute. Times are for a quad processor 550 MHZ Pentium III node.
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512x512, with 2048 samples per irradiance value. Aleph Map Hi-res uses the

Saliency map for velocity compensation, but rendered the scene at 640x480,

8192 samples per irradiance value. In most of the frames we achieve a 6x to

11x speedup over standard irradiance caching. Using spatial factors only we

achieve a 2x speedup. A marginal improvement over spatial sensitivity is

obtained if the full motion compensation heuristic is used in conjunction with

spatiotemporal sensitivity. Note that all these improvements are compared to

the speed of the unaugmented irradiance caching technique, which is hun-

dreds of times more efficient than simple path tracing techniques. In addition,

the speedup was found to be largely independent of the number of samples

shot.

In this demonstration, we maintained good sampling protocols. The sam-

pling density for each irradiance value is left unchanged, but the irradiance

cache usage is perceptually optimized. Figure 6.11 shows the locations in the

image at which irradiance values were actually computed. Bright spots indi-

cate that an irradiance value was calculated while dark regions are places

where the cache was used to obtain an interpolated irradiance value. This also

explains why the speedup is independent of the number of samples shot,

because the spacing of the irradiance cache is optimized, not the number of

samples per irradiance value.

In static scenes where only the camera moves, the irradiance cache can be

maintained over consecutive frames. Our technique was found to perform

well even when such interframe coherence is used. An Antique Room

sequence was rendered at a resolution of 640x480, 512 samples for the direct

lighting and 8192 samples for the irradiance value (indirect lighting). The

high number of direct samples is due to the presence of glossy surfaces in the

scene. In the Pool and Art Gallery sequences, the surfaces were either specu-
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Figure 6.11: Sampling patterns for frame 0 of the Art Gallery sequence

The bright spots indicate where the irradiance value for the irradiance cache
is generated and the dark spots indicate where an interpolated irradiance
value is used. More irradiance values are needed near object boundaries and
highly curved surfaces as it is at those locations that the error term is large.

Reference
Sampling
Density

Aleph Map
Assisted
Sampling
Density
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lar or diffuse, obviating the need for large numbers of direct lighting samples.

Figure 6.12 shows a frame from the Antique Room sequence.

Glossy surfaces require a large number of samples to evaluate the lighting

solution correctly. The irradiance cache cannot be used for glossy surfaces

because unlike Lambertian, diffuse surfaces, glossy surfaces require the eval-

uation of the glossy Bi-directional Reflectance Distribution Function for each

incoming light value. Therefore, in the Antique Room sequence, only the dif-

fuse term of the lighting solution is accelerated via the Aleph Map enhanced

irradiance cache. The speedup of about six is less than previous scenes

mainly due to the presence of glossy surfaces. The next section addresses the

issue of applying the Aleph Map to progressive global illumination and will

address the issue of accelerating the rendering of scenes with glossy surfaces.
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Figure 6.12: Antique Room Visual Comparison, Frame 32

The reference solution (top) and the Aleph Map accelerated solution (bottom)
are presented for visual comparison. The Aleph Map accelerated solution
was rendered six times faster than the reference solution.

Reference Solution

Aleph Map Accelerated Solution
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6.2 Application to Progressive Global Illumination

In perceptually-driven progressive global illumination, programs utilize a

variety of perceptual convergence tests to determine the stopping condition

of a lighting solution. These perceptual convergence tests combine a statisti-

cal test method with a perceptually-based modification. The previous work

section covers a whole array of these convergence tests. We will focus on the

application of the Aleph Map in convergence testing.

Recall that the Aleph Map represents spatiotemporal sensitivity. That

means, we can derive the physical convergence criteria simply by calculating

the luminance threshold ∆L as follows:

(6.9)

where ∆L(x,y) is the luminance threshold, L(x,y) is the adaptation lumi-

nance calculated as the average luminance in a one degree diameter solid

angle centered around the fixating pixel and ∆LTVI is the threshold vs. inten-

sity (TVI) function defined in Ward-Larson et al. [Ward97]. The TVI func-

tion tells us for a given adaptation luminance, the smallest contrast needed to

discern one pattern from another. Figure 6.13 shows the shape of the TVI

function.

In the style of Ramasubramanian et al. [Rama99], we can use the Aleph

map to determine the stopping condition of a lighting solution by comparing

the difference between two consecutive stages, N and N+1, of the lighting

solution. The stopping condition is given in the following equation:

(6.10)

where LN(x,y), LN+1(x,y) are the mean pixel luminances from stages N

and N+1 respectively of the lighting solution, and ∆L(x,y) is the luminance

L x y,( )∆ ℵ x y,( ) LTVI L x y,( )( )∆×=

LN x y,( ) LN 1+ x y,( )– L x y,( )∆<
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threshold calculated in Equation 6.9. The rendering stops when the difference

between two stages of the lighting solution is below the luminance threshold

specified by the Aleph map and the TVI function.

Another way to use the luminance threshold presents itself in the calcula-

tion of the variance of a sample. Bolin and Meyer used the upper and lower

bounds images derived from the variance of the lighting solution as boundary

images in their paper [Boli98]. Lee et al. [Lee85] proposed a stopping condi-

tion based on variance which we will extend to the perceptual domain using

the Aleph Map. Recall that the sample variance of a set of N identically dis-

tributed samples of a random variable, VN, may be calculated as:

Figure 6.13: Threshold vs. Intensity (TVI) Function

Adapted from [Ferw96]. The TVI is a psychophysically derived function tells
us the threshold luminance needed to detect a target from a background of a
specified luminance. The Ward function is the envelope of the TVI curves for
the cones and rods of the human eye.
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(6.11)

where Li is the pixel luminance at iteration i of the lighting solution. The

simplest stopping condition is to ensure that the standard deviation of the

pixel luminance is smaller than the luminance threshold:

(6.12)

where ∆L(x,y) is the luminance threshold calculated in Equation 6.9. We

shall call this test the “Aleph Variance Test (AVT)”.

Kirk and Arvo [Kirk91] point out that having a stopping condition based

on the variance of a sample can introduce a systemic bias to a lighting solu-

tion. They suggest a simple rule to avoiding the bias by determining how a

sample is to be used before it is drawn rather than basing the decision on the

actual samples being drawn. In the light of this observation, we may modify

our sampling protocol in the following manner:

(6.13)

The sampling protocol described in Equation 6.13 is a simple heuristic

that we shall call the “Aleph Sampling Protocol (ASP)”.

We re-render the Antique Room with the Aleph Variance Test and the

Aleph Sampling Protocol in order to determine the effectiveness of these two

techniques. The Antique Room contains many glossy surfaces, requiring that

many samples be shot per pixel in order to get the correct integration over the

glossy reflectance function. The reference solution shoots 512 rays per pixel

at all locations, and 8192 samples per irradiance value for indirect illumina-

tion. The Aleph Variance Test (Equation 6.12) solution shoots as many rays

as it needs until the standard deviation (square root of variance) is below the
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luminance threshold or the limit of 512 is reached. The Aleph Sampling Pro-

tocol (Equation 6.13) shoots (512 / Aleph Map value) rays or 16 rays, which-

ever is bigger. Figure 6.14 shows the timings associated with using these two

speedup techniques in comparison with the unaugmented irradiance cache

and the Aleph Map enhanced irradiance cache in rendering of the Antique

Room. In the top chart, the timings are for the initial frame where the irradi-

ance cache is filled. In this phase of the rendering, the filling of the irradiance

cache takes up most of the computation time, which is why the Aleph Map

enhanced Irradiace cache, the Aleph Variance Test and the Aleph Sampling

Protocol perform at about the same speed. Since this is a static scene, the irra-

diance cache can be carried over from the previous frame, unlike the earlier

scenes where there were moving objects. When the irradiance cache is

already filled, indirect diffuse illumination computation is efficient and the

majority of the computation is required to solve for the glossy direct reflec-

tions. In this scenario, as shown in the bottom chart of Figure 6.14, the Aleph

Variance Test and the Aleph Sampling Protocol are more efficient than the

Aleph Map enhanced Irradiance Caching because they accelerate the render-

ing of glossy direct illumination as well. The two techniques also display an

order of magnitude speedup in comparison with unaugmented irradiance

caching. Figure 6.15 shows a images of the Antique Room rendered with the

Aleph Variance Test and the Aleph Sampling Protocol.

One interesting observation is that the error in the image has been pushed

into visually non-salient locations. The errors are not noticeable from the

proper viewing distance, but a magnification of a factor of eight reveals the

locations to which the errors have been displaced. Figure 6.16 shows a mag-

nification of the glossy region of the floor under the armchair in the Antique

Room. These errors are not visible at full resolution, but become apparent
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Figure 6.14: Antique Room Lighting Speedups

The top chart compares the timings per frame when the irradiance cache is
empty. Since this scene is static, the irradiance cache can be recycled through
subsequent frames. In the bottom chart, the AVT and ASP pull ahead because
they perform perceptually-based progressive global illumination.
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Figure 6.15: Antique Room Progressive Rendering

The Aleph Variance Test (top) and the Aleph Sampling Protocol (bottom) are
presented for visual comparison against the non-progressive rendering
techniques in Figure 6.12 (page 71).

Aleph Variance Test (AVT)

Aleph Sampling Protocol (ASP)
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Figure 6.16: Antique Room Magnification

This figure shows a region of the floor of the antique room underneath the
armchair, magnified by a factor of eight. The reference solution shows a
smooth glossy reflection off the floor whereas the AVT and the ASP
solutions have noticeable noise. The noise is below perceptual threshold at
normal magnifications and is also ‘pushed’ to less important locations in the
image.

Reference

Aleph
Variance
Test

Aleph
Sampling
Protocol
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upon magnification. The Aleph Map enhanced Irradiance Cache does not

share this property as it samples direct illumination with the same amount of

samples as the unaugmented irradiance cache.



CHAPTER 7

Discussion

The words of the Preacher, the son of David, king in Jerusalem: “...of making
many books there is no end; and much study is a weariness of the flesh. Let us
hear the conclusion of the whole matter: Fear God, and keep his command-
ments: for this is the whole duty of man. For God shall bring every work into
judgment, with every secret thing, whether it be good, or whether it be evil“

7.1 Validation

In order to test the efficacy of the Aleph Map independent of any acceler-

ation technique, we compute the luminance threshold as in Equation 6.9 and

multiply it with a uniform random number distributed over (0.0 .. 1.0) in

order to derive a sub-threshold noise map. If the theory holds, the addition of

the sub-threshold noise map should not be discernible to the viewer. Figure

7.1 shows how a noisy reference solution is created for the art gallery

sequence. A video of the reference solution and the noisy reference solution

were shown to a panel of viewers and it was found that the noise was indeed

sub-threshold in normal viewing conditions. This is an empirical test of the

Aleph map and is not meant to be a rigorous psychophysical examination of

the map, which the author is not qualified to conduct. The Saliency Map was

validated separately by Itti and Koch [Itti00], and the Spatiotemporal Sensi-

tivity was validated by Daly [Daly98].
80
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Figure 7.1: Noise Map Test

A noise map is constructed using the Aleph Map, the TVI and a unit random
number. This noise map created for each frame of the reference solution and
added to the reference frame to create a ‘noisy’ reference solution.

Reference
Solution

+ Aleph Map
* TVI
* Unit Random Noise

= Noisy
Reference
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7.2 Discussion

In viewing the Art Gallery sequence, it was discovered that repeated

viewings can cause the viewer to pay more attention to unimportant regions.

In doing so, the viewer deliberately chose to ignore attention cues and focus

on unimportant areas such as the ceiling. This introduces a top-down behav-

ioral component to visual attention that is not accounted for in our model.

The pool table sequence had unambiguous salient features (the pool balls)

and was not as susceptible to the replay effect. One assumption we made was

that the rendering technique does not introduce visually salient errors, which

might not hold true for some kinds of rendering techniques.

Visual sensitivity falls rapidly as a function of foveal eccentricity. An

experiment incorporating foveal eccentricity into the model was performed,

and significant speedup was achieved. However, the animations generated

with the use of foveal eccentricity tended to be useful only in the first few

runs of the animation, as viewers tended to look away from expected foveal

regions once they had seen the animation a number of times. Visual artifacts

are visible once non-foveal regions are subject to the close scrutiny of

observer.

An assumption that we make is that there is something in the scene to

draw an observer’s attention to. This implies that our technique would not

work as well when there is nothing in a scene that stands out or when every-

thing stands out equally. When such cases are detected, we would suggest

defaulting to motion compensating the entire scene and sacrifice performance

for accuracy.

The current implementation of the perceptual metric has complete knowl-

edge of the animation to be rendered in the form of image estimates. In inter-
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active applications, such information is not readily available. In such cases

we suggest using motion prediction for estimating image plane velocity and

moving blocks of sprites using the motion prediction to derive the image esti-

mate for the next frame. Additionally, the processing overhead, though negli-

gible for global illumination, would pose a problem for real-time

applications. One possible solution is to use the graphics hardware as a SIMD

engine for computing the Aleph Map. This would require the image convolu-

tion extension, the color matrix extension and extended range color channels,

features that are soon to appear on commodity graphics hardware.

Our implementation also does not include color and orientation in the sen-

sitivity computation, although those factors are considered in the computa-

tional model of visual attention. We also do not implement contrast masking.

This makes our model conservative, but it is better to err on the safe side. We

have chosen to treat each component of the visual system as multiplicative

with each other and the results have shown that it works but the human visual

system is non-linear and has vagaries that would be hard to model.

7.3 Future Work & Conclusion

There are many areas that the Aleph Map may be applied to that have not

been explored in this thesis. One such area would be video compression. The

Aleph Map can be used to perceptually guide the quantization of image

frames in a sequence prior to video compression. Another application would

be to select the Level of Detail in real time rendering applications. For exam-

ple, a heuristic could be constructed such that when the Aleph map has small

values, a more detailed level should be used for that area of the scene. It
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would be interesting to apply the technique to view-independent global illu-

mination as well.

In this thesis, a novel perceptual technique for exploiting the limitations of

the Human Visual System with regards to spatiotemporal sensitivity is

shown. Previous perceptual techniques functioned well for static scenes,

whereas our technique breaks new ground by enhancing perceptual tech-

niques and applying them to dynamic environments. The new technique

takes the form of a spatiotemporal error threshold elevation map that is mod-

ified by a computational model of visual attention and adapted to specific

applications. The resulting Aleph Map can be used as a perceptual oracle to

guide global illumination via optimizing irradiance caching. Its use was dem-

onstrated in progressive illumination as well as a perceptual oracle for glossy

direct illumination. The algorithms enhanced by our perceptual model exhib-

ited an order of magnitude increase in efficiency. The possibilities for Aleph

Map use are many and varied. The author is pleased to make this contribution

to the state of the art in graphics research and technology.
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