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ABSTRACT

Computer models of the real world often use images of the environment to

capture realistic visual complexity. Image-based modeling techniques permit the

creation of geometric models with a high level of visual detail from photographs.

These models are textured by resampling these images of the scene; we call this

process image-based texturing. The problem with traditional image-based texturing

is the poor quality of the extracted textures, which are often blurred or stretched

due to sampling problems. Furthermore, the extent of this degradation varies

across the scene, due to differences in the pose and position of the camera relative

to each object in each image.

This thesis makes two contributions to image-based computer graphics. First,

it introduces a physically-based metric of sampling quality, based on the Jacobian

matrix of the imaging transform, which captures the interaction of the imaging

system with the imaged environment. This metric provides a direct, physical

measure of the quality of resampled textures, and suggests a physical interpretation

of the multi-resolution image representations widely used in texture synthesis. The

second contribution, which builds on this insight, is a novel use of the metric for

extending current texture synthesis methods to image-based texturing processes.

Use of the sampling metric enables detail synthesis – the insertion of high spatial

frequency detail into regions of an image-based model’s textures where the imaging

process captures only low frequency texture data. Given a small set of input images

and a geometric model of the scene, this technique allows the creation of uniform,

high-resolution textures. Our synthesis approach relieves the user of the burden of



collecting large numbers of images and increases the quality of user-driven image-

based modeling systems. The research described in this thesis allows both the

quantification of sampling effects in image-based computer graphics systems, as

well as the correction of degradation in image-based textures.

The sampling metric introduced in this thesis has usefulness far outside the

image-based texturing application demonstrated here. Such a metric will have a

potential impact in the fields of vision-based geometric reconstruction, material

measurement, image-based rendering, and geometric level-of-detail management.

The goal of this thesis is merely to introduce the metric and validate its usefulness

for one critical application.
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Chapter 1

Introduction

Image-based modeling and texturing are compelling methods for creating detailed

and accurate representations of real world structures. Using image-based computer

graphics techniques, it is possible to quickly capture or reproduce a much higher

level of detail and realism than would be possible using traditional geometric mod-

eling approaches. Highly detailed renderings created in such a way are valuable

for cultural heritage, tourism, urban planning, and entertainment purposes.

1.1 Background

A wide variety of approaches to modeling the imaged environment have been de-

veloped, especially over the past 20 years. These techniques include approaches

using active sensors, such as laser scanners, which generate a three-dimensional

model of the geometry of the scene. Other methods create a representation of the

environment (including surface appearance) by analyzing only sets of images (or

video) from passive sensors, such as digital cameras. We refer to all approaches in

the latter group collectively as image-based modeling.

Advances in computer- or user-driven image-based modeling have been espe-

cially impressive in recent years. Figure 1.1 shows several image-based modeling

approaches to geometric reconstruction. Figure 1.1 (a) shows a screen-shot of Fa-

cade [DTM96], a user-driven image-based modeling system. The images in (b)

show an uncalibrated, fully automated, computer vision approach [PKVG98] at

work. Figure 1.1 (c) shows a model created from a single image (in this case the

painting ‘La Trinita’, by Masaccio) [CRZ99]. In addition to recent improvements

1
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(a)

(c)

(b)

Figure 1.1: Several approaches to image-based modeling. A user-driven system,

Facade, is shown in (a). A fully automated, computer vision approach is shown

in (b). Only a single image (in this case a painting) is used to create the model

shown in (c).
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in the quality of reconstructed geometry, shortcomings in geometric accuracy can

often be masked by detailed textures[Hec86] derived from the imaged environment.

In spite of the promising progress in image-based modeling, however, these

models, and especially the textures applied to their surfaces, suffer from several

severe sampling-related problems. In general an image from a single camera posi-

tion yields an uneven sampling of the texture across the surface of an object, even

though the sampling rate is constant across the image plane. This effect is due to

the camera pose and position with respect to each surface in the scene, as well as

the effects of projection and lens distortion, and is demonstrated in Figure 1.2. As

the distance between the location of samples in the world gets larger, the sampling

rate gets smaller (see Figure 1.2, top row). The result is that the minimum resolv-

able feature size becomes larger. The visual effect of this is progressive blurring, as

shown in the bottom row of Figure 1.2. This degradation is obviously undesirable

in image-based textures.

Current approaches attempt to improve the appearance of image-based models

either by merging textures extracted from several different images of the scene from

different viewpoints, or by constructing an alternative surface appearance model

such as a View-dependent Texture Map [DTM96, DYB98] or a Surface Light Field

[WAA+00]. These approaches often require many more images than are required

to model the scene geometry. Additionally, the requirement for a well-distributed

and often dense sampling of the desired rendering viewpoints imposes a heavy

and often impossible burden on the image capture process. For example, these

techniques to accurately represent a tall building would require images of the top

of the building facade. However, as stated previously, using fewer images leaves

the surface texture sampled in a highly non-uniform manner, resulting in some
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Sampling

Pattern

Texture

A

B
C

A B C

Figure 1.2: Sampling patterns in an environment. The top image shows the scene.

The middle row illustrates the changing sampling pattern over each surface of in-

terest. The bottom row shows the effects of the sampling pattern on the resampled

textures.
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areas with high detail, but leaving most areas with obvious degradation and visual

defects.

1.2 Our work

This thesis addresses the problem of poor sampling in two ways; first we identify a

physically-based metric of sampling quality. Then we show how to extend existing

texture synthesis algorithms to generate the missing detail, injecting statistically

correct high frequency information into areas with poor detail, yet preserving any

detail present.

The sampling metric is based on and captures the interaction of imaging sys-

tems with the imaged environment, and thus quantifies the degradation present in

textures resampled from images. Our metric uses the Jacobian matrix of the imag-

ing transform – the transform which maps the surface of an object into the image

from which a texture will be extracted. The bottom row of Figure 1.2 shows por-

tions of textures extracted from an image. Note that the quality of the extracted

textures varies widely. As discussed previously, these quality variations are due to

the way in which the surfaces were sampled. The Jacobian-based metric enables

us to quantify the sampling behavior across texture space and leads directly to a

physical interpretation of the multi-resolution image representations widely used

in texture synthesis (a relationship we discuss in Chapter 5). Using this metric, we

quantify which parts of a texture are poorly sampled. We the adapt conventional

texture synthesis techniques to populate empty high spatial frequency bands with

detail, while preserving any existing low frequency texture data captured by the

imaging process. Our technique allows the creation of models with uniform, high-

resolution textures from small input image sets, and perhaps more significantly,
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from sets which are poorly distributed in the space of desired viewing positions.

Generating textures with these qualities constitutes a major improvement in the

ability to generate highly detailed, reality-preserving models with reasonable input

constraints for users.

The remainder of this thesis is organized as follows. Chapter 2 is a discussion of

previous related work. Chapter 3 examines the sampling behavior of image sensors

and discusses sensor calibration, laying the groundwork for the derivation of the

metric presented and demonstrated in the following chapters. Chapter 4 describes

the use of the Jacobian as a sampling quality metric. Chapter 5 describes how we

apply the metric to the task of detail synthesis and presents the results of that

technique. Chapter 6 concludes with a discussion of future work.



Chapter 2

Related Work

This chapter will review work with immediate relevance to our research focus.

The research presented in this thesis is related to previous research in both texture

synthesis and image-based texturing (IBT). We discuss work in these two areas

below.

2.1 Texture synthesis

Texture synthesis based on Markov Random Fields (MRF) has been studied ex-

tensively from the standpoint of generating an arbitrarily sized texture patch from

a small example patch. Under Markov Random Field theory, spatial properties of

image pixels can be modelled through contextual constraints. This is achieved by

characterizing mutual relationships among such entities, i.e. pixel neighborhoods,

using conditional MRF distributions. This technique relies on the assumption that

the process which generated the texture is both stationary and local (that is, the

pixel is determined solely by its neighboring pixels, not by other factors such as

proximity to an image edge, etc). In order to capture both small and large scale

phenomena, texture synthesis algorithms based on MRFs generally use an image

pyramid, in which a pixel’s neighborhoods at higher levels represent larger features

than similarly sized pixel neighborhoods at lower levels.

Heeger and Bergen [HB95] and DeBonet [DeB97] presented the basic approach

using steerable pyramids1 [KS96]. Efros and Leung [EL99] demonstrated synthesis

1A steerable pyramid is a linear, multi-scale, multi-orientation image decom-
position. The basis functions for a steerable pyramid are directional derivative
operators at different sizes and orientations.

7
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with Gaussian pyramids and Wei and Levoy [WL00] introduced a Tree-structured

Vector Quantization accelerated search method. These approaches have not been

directly applied to image-based texturing.

Freeman et al.[FJP02] describe a synthesis approach for sharpening images.

They demonstrate synthesis of the only highest single octave2 of data, and their

technique is restricted to image space. A texture metric similar to the one presented

in this paper would be complementary to their approach and provide a degradation

model suitable for extending their training based approach to 3D surfaces.

Zalesny and Van Gool[ZG01] demonstrate a method of synthesizing oriented

textures for surfaces, but their approach does not model texture quality, and thus

replaces the low resolution texture, rather than using it to guide the synthesis.

The detail synthesis approach introduced in Chapter 5 builds on these algo-

rithms (primarily Wei and Levoy [WL00]) to allow higher quality image-based

texturing on 3D surfaces using real camera information. Our algorithm synthe-

sizes only the detail missing from the original images, not the entire texture, thus

preserving any data from the images that was correctly captured.

2.2 Image-based texturing

It is often useful to discuss image-based texturing research with respect to the scale

of the objects of interest: small- to medium- scale objects (including items suitable

for inspection on a turntable such as toys [LHS00], as well as larger items such as

statuary [BMR01]); and large-scale objects such as buildings [Deb96]. Although

we are interested in applying the technique presented in this paper exclusively

2An octave is an interval between two frequencies which have a ratio of two to
one (2:1).
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to the last category, we briefly review relevant work in the former category as

applicable. Finally, we discuss the various texture quality metrics currently used

by image-based texturing techniques.

2.2.1 Techniques for small- and medium-scale objects

Several approaches have been proposed recently for extracting textures from mul-

tiple images [BMR01, LHS00, NK99, RCM99]. These techniques do not perform

detail synthesis, but instead merge (blend) the contributions from several images

using quality metrics (discussed below). These methods require complete and

dense image coverage to ensure that for every texture patch there exists at least

one image that captures the desired level of detail. To date these approaches have

primarily been applied to small- and medium-scale objects.

Surface Light Fields[WAA+00], and Bi-directional Texture Functions[LYS01]

(BTFs) are methods for representing the view- and illumination-dependent aspects

of the appearance of the surface of an object. Both methods construct a higher

order model of surface appearance that is continuous with respect to both the

view direction and the illumination angle, based on a discrete number of samples

in each domain. These methods can be used to create and render attractive surface

appearance, but generally require many more images than are needed to model the

geometry. Surface Light Fields already require very large, dense data sets, making

their extension to large scale objects and environments uncertain. Although BTFs

have been demonstrated using smaller numbers of input images for small images,

their robustness under this constraint for large-scale objects has yet to be tested.
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2.2.2 Techniques for large-scale objects

For large-scale objects, View-dependent Texture Maps[DTM96, DYB98] (VDTMs)

have been proposed as a way to improve the appearance of these often complex

surfaces. A VDTM is a texture which is generated for a viewpoint on an as-

needed basis, blending contributions from different images based on viewing angle.

VDTMs tend to capture the view-dependent aspects of surfaces, such as specu-

larity, quite well – so long as the illumination direction constant. But VDTMs

inherently require a large number of images, much like Surface Light Fields and

BTFs. VDTMs often require twice as many images to texture as to model[Deb96].

Also, like Surface Light Fields and BTFs, VDTMs require that the space of pos-

sible rendering viewpoints be fairly evenly and densely sampled. This can be an

unreasonable burden on the modeling process, as it may be impossible to acquire

enough images to create a robust surface appearance representation for all of the

geometry. For example, the top of a facade of a tall building or for the sides of

many structures in constricted urban settings would be exceedingly difficult to

capture.

2.2.3 Texture quality metrics

Texture quality metrics are often used by image-based texturing techniques that

need to select or weight contributions to a texture from pixels in several images. A

good quality metric should account for all of the geometric properties of the scene

and camera which affect the sampling behavior of the scene. That is, the metric

should account for the relative difference in pose and position of the camera, with

respect to each object in the environment, including depth, viewing angle, and

camera properties such as field-of-view and lens distortion (if present). Note that
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the following common metrics only approximate the dominant (or easily computed)

properties affecting texture quality.

Image-based texturing methods such as VDTMs, Surface Light Fields, and

BTFs apply a texture quality metric involving the viewing angle. As noted by

Debevec et al.[DTM96], the viewing angle metric is invariant with respect to scene

depth, and thus will not differentiate between two images from the same cam-

era angle but different depths. Several of the approaches which simply merge

images[LHS00, RCM99] also use the same metric.

Bernardini et al. [BMR01] use the viewing angle divided by depth as a metric.

This approach can be used to evaluate two texture patches with either viewing

angle or depth held constant, but may not perform correctly where both vary. It is

also difficult to formulate a direct physical interpretation for this metric in terms

of sampling behavior.

Ofek et al.[OSRW97] and Neugebauer and Klein[NK99] use projected pixel area

to evaluate texture quality. This metric has an obvious physical interpretation,

but it does not contain any information regarding the anisotropic behavior of the

sampling without making assumptions about the shape of the projected area. We

find that this information is required for texture quality analysis.

In contrast to the above approaches, the sampling quality metric introduced

in this thesis accounts for all of the geometric factors which affect the spatially-

varying sampling rate of the image sensor, while also preserving information on

the orientation and eccentricity of the samples.



Chapter 3

Digital Image System Calibration

The purpose of this chapter is twofold. First, this chapter explains the need for a

metric describing the performance of imaging sensors commonly used for image-

based computer graphics systems, based on sampling theory. Second, this chapter

provides an analysis of the factors ultimately affecting sensor performance. These

factors must be properly calibrated in order to formulate the sampling behavior

metric which is presented in Chapter 4. The characterization of imaging systems

provided in the current chapter is specific to consumer or professional grade digital

camera systems. These cameras are inexpensive and readily available, making them

ideal for image-based computer graphics. We begin by describing digital imaging

systems as sampling systems, then discuss their physical properties as they relate

to image formation. Last, we last state explicitly the camera model assumptions

in place for the remainder of this thesis.

3.1 Digital imaging systems as sampling systems

Considering digital imaging systems as sampling systems is the critical perspective

used in this thesis. Working within this paradigm determines which problems

in the domain are interesting; likewise it directs our search for solutions to these

problems. We begin with a basic introduction to sampling theory, and then use the

sampling framework to examine the problems inherent in the process of imaging

the environment.

12
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3.1.1 Sampling basics

This section provides a very brief introduction to sampling theory. The reader is

directed to excellent works by Holst[Hol98, Hol00] and Smith[Smi97] for a more

comprehensive treatment of the concepts covered in this section.

Sampling is the process of digitizing an analog signal. This can be performed

for a variety of reasons, including but not limited to ease of storage, compression,

reproduction, and processing. These applications are referred to collectively as

digital signal processing. All digital signal processing applications are concerned

with the central question of how many digital values are required to reproduce the

analog signal with a minimum loss of information. This question is answered by

Shannon’s Sampling Theorem[Sha49].

Shannon’s Sampling Theorem (often called the Shannon-Nyquist Theorem, the

Whittaker-Shannon Theorem, or simply the sampling theorem) states that a time-

or space-varying signal is completely determined by samples taken 1
2fMAX

units

apart, if and only if the signal contains no frequencies higher than fMAX . The

signal can then be reconstructed from these samples by using an ideal low-pass

filter as a reconstruction filter. The frequency fMAX is also known as the Nyquist

frequency, designated fN , and it is the highest frequency that can be reconstructed

without aliasing from a signal sampled at a sampling rate of 2fN . Observe that

for the sampling theorem to be applicable, the signal must satisfy two related

conditions: it must be band-limited to fMAX , and it must be sampled at ≥ 2fMAX .

Consider for a moment the condition illustrated in Figure 3.1. The original

analog signal is shown in Figure 3.1 (a). The sampled signal is shown in part

(b). When reconstructed with the ideal low pass filter (the sinc function) shown

in (c), the reconstructed signal (d) is identical to the original signal. Note that
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(a)

(d)

(c)

(b)

Figure 3.1: (a) shows the original analog signal. The signal is sampled and the

digitized values are shown in (b). When reconstructed with the sinc filter shown

in (c), the reconstructed signal (d) is identical to the original signal.
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even the higher frequencies toward the right-hand side of the original signal are

reconstructed correctly.

In contrast, Figure 3.2 illustrates the reconstruction of the same signal using a

sampling rate that is too low. The original signal – identical to that in Figure 3.1

– is shown in (a). The sampled signal is shown in (b). Observe that the samples

are approximately twice as far apart as in Figure 3.1; that is, the sampling rate in

Figure 3.2 is approximately half that shown in the previous figure. When recon-

structed with the low pass filter shown in (c), the reconstruction is not identical

to the original signal. Specifically, the higher frequencies in the right hand portion

of the original signal have been aliased to lower frequencies.

The limitations on sampling-based reconstruction described by Shannon’s The-

orem point to our primary concern with the process of image formation by digital

image sensors – namely, how does the information content of the reconstructed

signal (the image) differ from the information content of the original signal (the

environment)? This question is of especially pressing relevance for image-based

modeling and texturing techniques, the strength of which is their proposed ability

to capture environmental complexity that would otherwise be difficult or impos-

sible to model. Characterizing the extent to which these techniques are capable

of representing this complexity is one of the primary goals of this thesis. Next,

we examine in greater depth the sampling theorem’s constraints on the frequency

content of the signal and on the rate of sampling, in the context of image formation.

3.1.2 Environmental considerations

The sampling theorem requires that the signal being sampled be band-limited in

order to be reconstructable. However – for imaged environments – this condition
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(a)

(d)

(c)

(b)

Figure 3.2: (a) shows the original analog signal. The signal is sampled and the

digitized values are shown in (b). When reconstructed with the sinc filter shown

in (c), the higher frequency portion of the signal has aliased to a lower frequency,

and the reconstruction in (d) is significantly different from the original signal.
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simply does not exist: the imaged environment has infinite bandwidth.

This characteristic is particularly relevant to the built environment, where

square waves (which require an infinite number of sinusoids to reconstruct) are

prevalent. Most scenes contain regions of increasing fine detail visible under mag-

nification. The implication is that no digitization will ever yield a perfect recon-

struction of even the visible environment. No amount or combination of laser

scanning, high resolution imagery, radar range data, or other sensor data will ever

permit this perfect reconstruction.

In practice, this is often not perceived to be a limiting factor. Although there

is some lower limit to the level of detail that can be captured, there is also often

a lower limit to the size of details of interest. As long as the sensor can properly

sample objects or features of this size, then the digitization of the environment

is sufficient for the given application. The question remains whether the physical

properties of the image sensor permit sufficient performance to capture the requisite

level of detail.

3.1.3 Imaging sensor considerations

In order to determine what quality of reconstruction it is possible to achieve, we

must understand the bandwidth limitations of digital image sensors. The next

section will examine the physical properties of sensor systems that affect these

bandwidth limitations. These properties have an impact on both the Nyquist

frequency (the stop-band) of the sensor, as well as the way that the data that is

captured is modified. In the latter case, the modified data must either be corrected

through proper calibration or accounted for explicitly in the system assumptions.

Factors which impact the sensor stop-band must be calibrated because they figure
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prominently into the sampling metric presented in the next chapter to measure the

sensor performance over the environment. The remainder of this chapter examines

the calibration of the relevant physical properties of image sensors.

3.2 Properties of digital imaging systems

Several complex and often interrelated factors affect the sampling behavior of the

image sensor. These factors need to be calibrated in order to properly account

for data modification and to initialize the sampling behavior metric described in

Chapter 4. In addition to the camera’s sensor resolution, the camera’s intrinsic

parameters, such as the focal length, optical center, and pixel shape, must be cal-

ibrated in order to characterize its projective behavior. Closely related to these

parameters is the geometric lens distortion to which images are subject; this behav-

ior will also be analyzed, along with the linearity of the sensor’s intensity response,

and any discontinuous spatial response such as demosiacing.

3.2.1 Sensor resolution

The resolution of the image sensor has an obvious impact on frequencies that the

sensor can record. As a practical note, not all of the sensor elements on a chip

may be in the camera’s imageable area. If a particular chip has an imageable

area of 1600 × 1200 sensor elements, with 19nm center-to-center element spacing,

then the highest frequency that can be detected is 1
38

cycles per nm. Observe that

this frequency measurement is on the sensor surface; that is, 1
38

cycles per nm

is the limit of observable frequencies after all projective properties of the system

have been taken into account. This value on its own is of limited use, since we

want the analysis to be with respect to a three-dimensional environment, not a
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two-dimensional sensor surface. The projective properties, as expressed in the

calibrated camera model, are described next.

3.2.2 The camera model

We model the intrinsic parameters of the camera using a special case of the camera

model utilized by the Camera Calibration Toolkit for Matlab [Cal]. The general

camera model has the following parameters:

fcx Focal length in units of horizontal pixels

fcy Focal length in units of vertical pixels

α Angle between the x and y sensor axes

px The x coordinate of the center of projection

py The y coordinate of the center of projection

We can make several assumptions to simplify the camera model significantly.

All modern image sensor fabrication processes guarantee sensor elements that are

equal dimensions in the horizontal and vertical directions and have zero skew.

Thus, fcx = fcy and α = 0. We can express this simplified camera model as a

projection matrix of the form:

M =

















fc 0 px 0

0 fc py 0

0 0 1 0

















(3.1)

Note that these intrinsic parameters are based on this one specific pinhole

camera model. Several alternate pinhole camera models have been proposed

[Tsa87, Zha99, HS97]. These models are all equivalent to each other, and to

the general Toolkit camera model, under various sets of simplifying assumptions.
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Camera models other than the pinhole model have been proposed, such as the

thin lens model [BW93] and Willson’s automated zoom lens model [Wil94]. In

general, these non-pinhole models are much more difficult to calibrate and provide

little benefit for image-based computer graphics applications. Projectively, the

difference between an actual digital camera with a compound lens assembly and

the pinhole model is negligible, and is a difference which most common lenses are

manufactured to minimize.

3.2.3 Lens distortion

Geometric distortion of the image is caused by the curvature of optical elements in

a compound lens assembly. Most modern lenses exhibit little or no geometric lens

distortion, except at very short focal lengths. However, because digital cameras

often have an effective focal length multiplier1, these short focal length lenses

may be used more frequently for digital photography. This is especially true for

imaging the built environment, where a wide field of view may be necessary in

order to photograph a complete structure without obstruction.

Geometric distortion can be modelled in many ways. The work in this the-

sis uses the “Plumb Bob” (radial polynomial + ”thin prism” ) distortion model

introduced by Brown [Bro66]. This model consists of both radial and tangential

components and is defined by:









x̂

ŷ









= (1 + R2r
2 + R4r

4 + R6r
6)









x

y









+ dx (3.2)

Where r2 =
√

x2 + y2, and dx is the tangential distortion vector:

1The focal length multiplier is due to the fact that most image sensors do not
fill the entire 35mm film frame.
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(a)

(b)

Figure 3.3: (a) shows the original calibration target. The distorted target is shown

in (b). Note the strong curvature to previously orthogonal rows and columns at

the edges of the target.
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dx =









Tx(r
2 + 2x2) + 2Tyxy

2Txxy + Ty(r
2 + 2y2)









(3.3)

The tangential distortion is due to ”decentering”, or imperfect centering of the

lens components and other manufacturing defects in a compound lens. The five

parameters to the model are:

Tx Tangential distortion ‘horizonal’ coefficient

Ty Tangential distortion ‘vertical’ coefficient

R2 2nd order radial distortion coefficient

R4 4th order radial distortion coefficient

R6 6th order radial distortion coefficient

Figure 3.3 shows a simple calibration target distorted using this distortion

model with Tx = Ty = 0, R2 = −.7, R4 = .05, and R6 = 0.0. Figure 3.3 (a) shows

the calibration target before distortion, and (b) shows the same calibration target

after distortion. Notice that the effect grows with the distance from the optical

center, and that at the edges the curvature is quite noticeable.

In practice, calibration of the first four parameters is sufficient to capture the

behavior of the distortion. It is generally unnecessary to calibrate the 6th order

coefficient.

3.2.4 Opto-electronic Conversion Function

The opto-electronic conversion function (OECF) defines how intensity values from

the environment are mapped by the sensor to digital values in the image. Fig-

ure 3.4 shows two example OECFs for a hypothetical, 8-bit, single channel image
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Figure 3.4: The profile in (a) shows an approximately linear OECF. Digital values

are proportional to intensity values. The profile in (b) shows the OECF for a

gamma-corrected image. In this case, digital values are approximately logarithmic

with respect to intensity.



24

sensor. In Figure 3.4 (a), the OECF is linear, that is, the digital values are pro-

portional to the scene intensities. Figure 3.4 (b) shows the OECF for a typical,

gamma corrected image. This OECF profile shows that the digital values are ap-

proximately logarithmic with respect to intensity. Early image sensors and some

modern scientific sensors exhibit strongly non-linear OECFs, usually with approx-

imately logarithmic behavior. This behavior can be beneficial for applications that

require images with a large dynamic range.

Almost all image sensors used in modern consumer or professional digital cam-

eras are now approximately linear on the chip. However, calibration of the OECF

is still necessary for several reasons. First, there is still some slight variation from

true linearity, which may prove significant for some applications. Second, not all

digital cameras provide access to the raw sensor values. Default image process-

ing on most digital cameras will typically gamma-correct the image intensities, in

order to make the final image appear correctly displayed on a computer monitor.

Calibration of the OECF permits quick and easy linearization of an image.

3.2.5 Demosaicing

Demosaicing is the process by which the sensor interpolates between red, green, and

blue sensor sites on a Bayer array to arrive at an RGB value for each pixel. Modern

demosaicing approaches are difficult or impossible to calibrate: they tend to be

highly non-linear, proprietary algorithms, and are generally kept as trade secrets

by camera manufacturers. To the best of our knowledge, no current calibration

work attempts to take the effects of the demosaicing algorithm into account.

Any concern about the effects of demosaicing may be short-lived, given the

state-of-the-art in image sensor design. At least one company, Foveon, has suc-
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ceeded in producing a CMOS sensor chip that captures RGB at each sensor site,

and which thus uses no demosaicing algorithm. Because use of the Foveon sensors

is not yet widespread, analyses of image sensors generally assumes that the de-

mosaicing algorithm ‘does the right thing’: that is, demosaicing does not modify

the information content of the scene, and thus the RGB values at a pixel are true

samples of the environment.

3.3 Calibration assumptions

Calibrated parameters for sensor resolution, projective behavior (the intrinsic pa-

rameters), and lens distortion will be used to formulate the metric in the next

chapter, under the assumption that a pinhole camera model with Plumb Bob dis-

tortion is a sufficient projective model. These are the factors that directly affect

the upper limit of the frequencies that the sensor is able to sample in the en-

vironment. Furthermore, we assume that the OECF is linear, or the image has

been linearized using the calibrated OECF. We use the standard assumption that

demosaicing neither creates nor destroys information.

The sensor characteristics discussed in this chapter can be calibrated using a

number of different methods. This thesis uses the Camera Calibration Toolkit for

Matlab [Cal] to calibrate the intrinsic parameters, and HDRShop [HDR] to verify

sensor linearity. Using the calibration information and the above assumptions the

next chapter provides a physical metric to answer the question of what information

the image sensor can capture from the three-dimensional environment.



Chapter 4

Sampling Quality

This chapter describes the problem of characterizing the sampling behavior of

an imaging sensor during the image formation process. It then explains how the

values of the Jacobian matrix of the imaging transform can be interpreted as sample

distances within the environment, and further how the Jacobian values can serve

as a measure of image-based texture quality.

Recall from Section 3.1 that every imaging system modifies and removes some –

arguably most – of the information in the environment during the imaging process.

The key to analyzing how an imaging system modifies the information content of a

given environment is to determine how the limit of the system passband – the set

of observable spatial frequencies – varies across the environment. The passband

limit (the Nyquist frequency) is the primary performance parameter that varies

across the environmental geometry1.

The behavior of the imaging system with respect to the observable spatial

frequencies in the environment is of broad concern in computer graphics. This

behavior is of theoretical import to a variety of research areas, such as level-of-

detail management, material measurement, geometric reconstruction, and image-

based modeling and rendering – all of which deal in some way with the quality of

data (usually visual detail) observed in some environment by some sensor.

This thesis presents the task of reconstructing surface textures by resampling

an image as the motivating example, demonstrating the importance of a physically-

1As noted in Section 3.2.5, the work in this thesis will assume that the demo-
saicing algorithm, when present, does not modify the information content of the
environment.

26
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Figure 4.1: Sampling patterns in an environment. The top image shows the scene.

The middle row illustrates the sampling patterns over each surface of interest. The

bottom row shows the effects of the sampling pattern on the resampled textures.
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based sampling metric. The sampling metric described in this chapter provides a

way to quantify the physical effects which lead to the blurring or stretching in

poor sampled textures. Figure 4.1 shows these sampling effects. The top image in

Figure 4.1 shows the scene. The middle row illustrates the sampling patterns over

the three faces of interest. The characteristic sampling patterns on the three faces

are easily observed, as are the resulting visual effects in the reconstructed textures,

shown in the bottom row.

Application of the proposed metric makes it possible to correct the degradation

in the reconstructed textures, as demonstrated in the following chapter. This

metric embodies a new approach to quantifying the sampling behavior of imaging

systems in computer graphics. To the best of our knowledge, it is the only attempt

which uses a physically-derived, analytical approach to measuring sampling quality.

The benefits of this approach are demonstrated in Section 4.5.

The following discussion is based on the observation that both image formation

and image-based texturing are sampling problems – in fact in some sense they are

inverse problems. The image formation process samples the environment; image-

based texturing resamples the image to reconstruct the texture for the surface of

an object in the environment. Both processes are discussed in more depth below.

4.1 Image formation

During the image formation process, an imaging sensor (typically a digital camera)

samples a scene to produce a digital image – a two-dimensional array of data

containing intensity values on a regular grid. These images may be either gray-

scale or color, so each sample may contain, respectively, a single value or an RGB

tuple. We refer to the individual samples in the image as sensor elements or
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sensels, in order to emphasize that they correspond to physical sites on the sensor

chip. We describe sensel positions by using coordinates in image-space, a discrete

two-dimensional space parameterized in (u, v), and we assume that the origin of

image-space is at the top left of the image. We further assume that image-space has

horizontal and vertical extents equal to the horizontal and vertical resolution of the

digital image, i.e. u and v range from 0 to 〈image width〉 and 0 to 〈image height〉,

respectively.

Recall that the problem which is being addressed is that of characterizing the

spatial frequency response of an imaging sensor. We wish to determine how the

limit of the observable spatial frequencies (the passband) varies across the environ-

ment2. By focusing on the limit of the passband, we risk neglecting the behavior

of the MTF within this band. However, the MTF can be quickly determined by

either computing the projective warping of the sensor PSF or by estimating of the

MTF using the sensor MTF and the spatially-varying Nyquist frequency. This

chapter focuses exclusively on determining this latter quantity.

In order to determine which spatial frequencies in the environment can be cap-

tured physically by the image sensor, the centers of adjacent sensels are projected

into the environment. The distance between the projected pixel centers in the

environment is measured in world units. This quantity is the sample distance.

More frequently we refer to the sampling behavior in terms of the sampling rate,

which is the quantity 1
sample distance

cycles per world unit. Recall that basic sam-

pling theory (see Section 3.1.1) tells us that the highest spatial frequency that can

2This is independent from the actual spatial frequency composition of the envi-
ronment. For example, a ‘boring’ part of the environment may contain only spatial
frequencies far lower that the camera’s physical upper limit. On the other hand,
no portion of the image can capture spatial frequencies higher than those dictated
by this upper limit, even if such frequencies are present in the environment.
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Figure 4.2: An illustration of spatially varying Nyquist frequency, fN , due to

perspective projection. In this example the sample distance A is half the length of

the sample distance B. Thus, the fNA
= 2fNB

.
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be captured – the Nyquist frequency, fN – at a point in the world is sampling rate
2

.

As the sampling rate varies across the objects in the scene, so does the Nyquist

frequency. A simple illustration of this variation is shown in Figure 4.2. Two ad-

jacent sensel centers are projected onto a nearby object, where they are separated

by the distance labeled ‘A’. Two adjacent sensel centers from a different part of

the image are projected onto a distant object, where they are separated by the

distance labeled ‘B’. If A = .5B due to perspective projection, then fNA
= 2fNB

.

It is easy to observe that although the sample values recorded by the camera

are uniformly distributed in image-space, it is generally not the case that the

locations that were sampled by the camera are uniformly distributed in the scene.

The non-uniform nature of the sampling is due to the pose and position of the

camera relative to the objects in the scene, as well as the effects of perspective

and lens distortion. This effect is illustrated in greater detail in Figure 4.3. Figure

4.3 (a) depicts the imaging process, with the sensel centers marked with pluses.

The projection of the sensel centers onto an object in the environment is shown.

Sensel centers in blue sample the top surface of the object. The projected sensels

show that the environment is sampled on a grid that is strongly non-uniform in

the world coordinate frame. This is shown more clearly in Figure 4.3 (b), which

is an orthographic view of the top surface of the object that is being imaged in

Figure 4.3 (a). The non-uniformity of the sampling grid is even more apparent in

this view. Observe that the sensels with projections marked A, B, and C all lie

adjacent to one another (in the same column) in the image. In the environment,

however, the distance from A to B is not equal to the distance from B to C, thus

the sample distance and sampling rate vary from A to C.
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Figure 4.3: An illustration of the camera sampling the environment on a non-

uniform sampling grid.
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4.2 Texture reconstruction

The previous section described the process by which a camera samples a given

environment to form an image. The current section describes the process through

which surface textures of a model are reconstructed, given a geometric description

and an image of the object. We refer to this process as image-based texturing.

We store the appearance of the surface of an object in a texture, which is a

discrete, two-dimensional array of data parameterized in (s, t). Data elements

in the texture are referred to as texels. In order to reconstruct a texture, given

an image and a geometric description for the surface of an object, each texel is

projected into the image. The values in the image are sampled at the projection

locations. This process is illustrated in Figure 4.4 (a). Although the texels are

arranged on a regular grid in the surface of the object (or, more precisely, in

the space parameterized in (s, t)), the projection of the texels into the image is

highly nonregular. This is shown graphically in Figure 4.4 (b), which shows the

two-dimensional image-space.

Image formation and image-based texturing are closely related processes. In

the most general sense, image formation relies on the mapping <2
Img → <3

Env, the

mapping that projects sensels in the image into the three-dimensional environment.

In practice, we are often concerned only with the properties of the projection over

the surfaces of objects, not over the empty space in the environment, so we limit

the mapping to <2
Img → <2

Surf , without loss of information. Image-based texturing

is concerned with the inverse problem – projecting texels on the surface of an

object into an image. Therefore, image-based texturing relies on the mapping

<2
Tex → <2

Img. If we restrict the relationship between surfaces and textures to

be one of known uniform scaling, then these are inverse problems, and we have
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the liberty of choosing the representation of the problem which is most convenient

for the given task at hand. More importantly, this isomorphism reveals why the

sampling behavior of the imaging system is the key factor in measuring texture

quality.

To illustrate the relationship between sampling behavior and texture quality,

consider an image-based texture reconstructed from the imaging configuration in

Figure 4.4. Such a texture would exhibit several sampling effects worth noting.

At the sampling locations in the region labeled ‘A’ in Figure 4.4 (b), the texture

supersamples the image. That is, the texture contains more samples than are

necessary to represent the information in the image. At the far right of the image, in

the region marked ‘B’, the texture subsamples the image in the horizontal direction.

This will result in a directional blur in the reconstructed texture. For further

examples of this blurring effect, refer to Figure 4.1.

4.3 Formal description of sampling

The mapping <2
Img → <2

Surf , which projects sensels in the image onto the surfaces

of objects in the environment, is now described more formally. In the most general

sense, this mapping can be expressed as some invertible function:

α = f(β) (4.1)

Where α is a vector in (s, t) (on the surface) and β is a vector in (u, v) (in

image-space). It is often useful to consider f as composed of several component

functions:

f = surf · obj · ext · int · dist (4.2)
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Figure 4.4: An illustration of a texture sampling an image on a nonuniform sam-

pling grid.
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In this decomposition, surf maps three-dimensional points on the surface of the

object into the two-dimensional parameterization of object surface. The function

obj models the metric transform which aligns an object’s local coordinate frame to

the world coordinate frame. The function ext models the metric transform induced

by the camera’s extrinsic parameters. The function int models the perspective

transformation induced by the camera’s intrinsic parameters. The function dist is

a function modeling the lens distortion.

If we further consider:

f ′ = tex · f (4.3)

Where the function tex maps points on the surface of the object into a texture,

then we have a decomposition for the mapping <2
Img → <2

Tex. This mapping and

its inverse will become very useful shortly.

Consider an alternate formulation for Equation 4.1. The sampling of the scene

by the camera (i.e., the image formation process) is often modelled in computer

graphics as series of matrix transforms which map textures onto objects, then map

objects into the image. Note that this is the actually the inverse of f ′, and maps

<2
Tex → <2

Img. This formulation is convenient given its rough mapping to the

stages of the computer graphics hardware rendering pipeline. The series of matrix

transforms is called the imaging transform, denoted MImg:

MImg = MProj · MTex (4.4)

Observe that MImg is composed of two transforms: MProj, which projects the

surface of an object into the image plane, and MTex, which projects the surface

texture onto the object surface. This relationship is depicted in Figure 4.5.
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MProj can be further decomposed as:

MProj = MDistMIntMExtMObjMSurf (4.5)

Observe that MProj corresponds to f−1, just as MImg corresponds to f ′−1.

MDist is the lens distortion model matrix. Note that the matrix form of MDist

limits the distortion model to a linear function. In practice this limitation can be

overcome in two ways. First, the functional form for the lens distortion can easily

be substituted, since both MDist and the function dist map <2 → <2. Substitution

of the functional form allows an arbitrary order distortion model to be used. As

an alternative, images can be preprocessed with an arbitrary order image-warping

operation derived from calibration data, in order to undistort the images. This is

the approach utilized to obtain the results presented in Chapter 5. In this case,

MDist is simply the identity matrix.

MInt is the transform associated with the intrinsic camera parameters. The

form of MInt, described in Section 3.2.2, is given again here for convenience:

MInt =

















fc 0 pu 0

0 fc pv 0

0 0 1 0

















(4.6)

Where fc is the focal length, pu is the u (horizontal) coordinate of the principal

point, and pv is the v (vertical coordinate of the principal point. The values of fc,

pu, and pv are obtained during camera calibration.

MExt is the transform associated with the the extrinsic camera parameters (the

camera pose and position). MExt is a constrained metric transform, and takes the

form:
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MExt =









R -RC

0 1









(4.7)

Where R is a 3×3 matrix for the rotation of the camera, and C is a 1×3 vector

containing the position of camera center in world coordinate frame. Collectively,

MDist, MDist, and MDist model the camera and map the three-dimensional world

coordinate frame into two-dimensional image-space.

MObj is the transform that maps the object into world-space, for scenes where

individual objects are defined in coordinate frames not necessarily coincident with

the world coordinate frame. MObj is a general metric transform and has the same

form as MExt, as shown in Equation 4.7.

MSurf is the transform that maps coordinates on the two-dimensional surface

of object to three-dimensional points in the local coordinate system of the object.

Note that, in a similar manner to the lens distortion transform, MDist, the ma-

trix form of MSurf constrains the surface parameterization to have a linear form.

Again, in practical situations this is easy to overcome by using the functional form

surf . This allows the use of parametric curved and high order surfaces, instead of

piecewise planar regions (such as triangle meshes).

MTex models the texture transform, which maps a texture onto an object’s

surface, and which also defines a sampling of the surface with a constant sampling

rate. The sampling is constant because we assume that the surface parameteri-

zation matches the texture parameterization except for a scaling factor, so MTex

is simply a uniform scaling (translation and rotation are represented in MObj or

MExt, as appropriate). Adjusting MTex adjusts the sample rate of the mapping

<2
Surf → <2

Img.
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Figure 4.5: Graphical depiction of the relationships between MImg, MProj, and

MTex.

4.4 Physically-based sampling metric

Optimally, the surfaces of objects in the environment should be sampled at a

constant, high rate by the imaging sensor. Under these conditions, high quality

image-based textures can be resampled from the image for the visible surfaces in

the environment. As has been demonstrated, however, imaging systems do not

generally sample the environment in this manner. Thus, in order to assess the

degradation in the image-based textures, and to have any hope of reconstructing

textures with constant sampling rates, we require a physical, sampling-based texture

quality metric. The remainder of this chapter explores such a metric.
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4.4.1 Sampling in world units

Consider first, only the transform MProj. This transform maps some object surface

into the image plane. We assume without loss of generality that the surface is

parameterized in two-dimensional coordinates (s, t), since this is required for the

texture mapping operation in any case. Points on the surface are described in

(homogeneous) coordinates in world units. Thus we have:

β = MProj · α (4.8)

where β is now a homogeneous vector in (u, v) and α is a homogeneous vector

in (s, t). This transform is illustrated in Figure 4.5. As noted previously, this is a

standard way to express the “imaging” of the environment in computer graphics.

If MProj projects an object surface into the image, then we are interested in char-

acterizing the inverse process: how does the inverse of MProj project the image

data onto an object surface? In keeping with this perspective, from this point

forward we deal primarily with M−1
Proj.

The key insight which allows the quantification of the sampling behavior is that

the Jacobian matrix[Kap84] of M
−1
Proj, denoted J(M−1

Proj), characterizes the sam-

pling induced by the imaging transform.

J(M−1
Proj) =









∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v









(4.9)

The values in the Jacobian matrix, as partial derivatives, describe the change

in sample distances in the directions indicated. Thus, the elements of this matrix

describe the change in sampling behavior induced by the transformation M−1
Proj.

The Jacobian matrix gives the distance of a step on the surface, given a unit step
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in the image. This is exactly the sample distance in world units. Note that because

it is derived directly from M−1
Proj, J(M−1

Proj) accounts for all of the factors affecting

the sampling rate – projective effects, camera pose and position, lens distortion,

etc. Since the sample distance determines the Nyquist frequency, quantitative

claims may be made regarding the sampling behavior under M−1
Proj based on the

values in the matrix J(M−1
Proj).

If the entries in M−1
Proj are labeled:

M−1
Proj =

















a b c

d e f

g h i

















(4.10)

Then J(M−1
Proj) is simply:

J(M−1
Proj) =









(ah−bg)v+(ai−cg)
(gu+hv+i)2

(bg−ah)u+(bi−hc)
(gu+hv+i)2

(dh−eg)v+(di−gf)
(gu+hv+i)2

(eg−dh)u+(ei−hf)
(gu+hv+i)2









(4.11)

Although the formulation in Equation 4.11 is most useful for the current work,

note that the Jacobian can be calculated for the functional form of the mapping

as well. This is useful, for example, when dealing with higher order lens distortion

models than may be modelled with a matrix.

As an example of the interpretation of the values in the Jacobian matrix, assume

some M−1
Proj such that, at some point on the surface:

J(M−1
Proj) =









5 0

0 5









(4.12)

If world coordinates are given in units of centimeters, the Jacobian matrix in

Equation 4.12 indicates that a sensel projected onto the object at this point would
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cover a region 5 cm high by 5 cm wide. Recall that the Nyquist frequency is

equal to sampling rate
2

, or in this case 1
5∗2

cycles
cm

= 1
10

cycles
cm

, in both the horizontal

and vertical directions. Thus the smallest feature3 that can be detected without

aliasing is 10cm in height or width.

4.4.2 Sampling in texture units

Although the transform MProj describes the sampling behavior in the environment

with respect to world units, it neglects MTex, the mapping of the texture repre-

sentation to the surface. Note that the surface parameterization is assumed to

have a constant scaling factor relationship to the parameterization of the texture

mapped to a surface. Since we are also interested in the quantitative properties

of the textures in relation to the image data, we can extend the above analysis to

use the entire imaging transform MImg, which maps a texel to a sensel. Because

we used an (s, t) parameterization of the object surface above, the relationship

between texture and image has the familiar form:

β = MImg · α (4.13)

This relationship allows us to conveniently refer to the rate at which the sensor

samples the scene in units of texels per sensel. Again, to stay with the concep-

tual model of projecting the image data into the environment, we deal primarily

with the inverse of the imaging transform, M−1
Img. This transformation is again

characterized by its Jacobian matrix, J(M−1
Img).

We will now look at a slightly more involved example of interpreting the values

3Here, in keeping with the sampling nomenclature, a ‘feature’ is a complete
cycle of an intensity profile sinusoid.
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Figure 4.6: A simple example illustrating the use of the elements of J to judge

sample rate. In (a) the texture has more resolution than is necessary to capture

the detail in the image. In (b) the texture has too little resolution and cannot

capture all of the detail present in the image.
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in the Jacobian matrix, than was performed in the last section. Evaluating the

Jacobian matrix across the texture gives four measures per texel (the four partial

derivatives). Values on the diagonal ( ∂s
∂u

and ∂t
∂v

) indicate the relative sample

distances in the direction of the projected u and v axes. This is illustrated in

Figure 4.6. The off-diagonal values ( ∂s
∂v

and ∂t
∂u

) can be thought of as indicating

the rotation of the s and t axes relative to the projected u and v axes. In Figure

4.6 these values (not shown) would be zero. As Figure 4.6 (a) shows, values in

the Jacobian matrix > 1 indicate that texture-space is discretized more densely

then the projected image-space, while values < 1 indicate the opposite (as shown

in (b)).

The values in the Jacobian matrix have a direct physical interpretation in terms

of the frequencies from the image that the texture is capable of representing at

a given resolution. In a sampling sense, values ≥ 1 indicate regions where the

texture parameterization is sufficiently dense to represent all of the data captured

by the image sensor (Figure 4.6 (a)). That is, projected sensels spread out to cover

more than one texel. Values < 1 indicate that some data in the image cannot be

represented with the given texture parameterization (Figure 4.6 (b)), or in other

words, projected sensels cover less than one texel.

4.4.3 An example using the Jacobian metric

As an example of how the Jacobian can be used to characterize the sampling

over some environment, consider the scene of brick cubes in Figure 4.7. The

environment is shown in the image at the top. For visualization purposes, the single

largest value of the Jacobian matrix evaluated at each pixel is shown in the next

row. This value corresponds to the worst sampling rate in any direction for that
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Figure 4.7: A simple example illustrating sampling metrics over an environment.

The first row shows the Jacobian for each texel on the indicated faces. The bottom

two rows show the determinant of the Jacobian matrix and the cosine of the angle

between the view ray and the surface normal, respectively.
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Figure 4.8: A rescaled visualization of the values of the Jacobian matrix for the

front face shown in Figure 4.7. Although it is not immediately apparent in the

original image, the front face is not parallel to the image plane – it is actually

tilted slightly back and to the left. Notice the sensitivity of the metric to slight

variations in the sampling rate induced by this very small rotation.
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pixel, and represents a upper bound on the non-directional sampling information

present. The textures shown across the row are color-mapped visualizations of the

these Jacobian values for each face of interest. Notice that the middle, oblique face

has a much higher maximum Jacobian value than the back face. This is due to the

large difference between the viewing angle and the surface normal of this face. In

contrast, although the back face is more distant, its maximum Jacobian value is

only approximately twice that of the front face, indicating that the sampling rate

across the back face is approximately half that of the front face. Figure 4.8 shows a

rescaled visualization of the Jacobian for the front face. This figure demonstrates

the sensitivity of the metric to even slight variations in the sample rate caused by

the pose of the face relative to the camera. As the figure shows, the front face is

tilted slightly back and to the side relative to the image plane. Next we compare

the Jacobian metric to two other metrics proposed in the literature and used in

existing systems.

4.5 Comparison of metrics

This section compares the performance of the physically-based Jacobian metric to

that of two other common texture quality metrics that attempt to approximate

variations in sampling. We compare our metric to a viewing angle metric and a

projected sensel area metric. To derive a single value for comparison purposes, we

again use the largest value in the matrix per texel as a conservative bound for the

best non-directional sampling rate at that texel.

Texturing algorithms utilizing the cosine metric were surveyed in Chapter 2.

This metric calculates the dot product of the viewing angle and the surface normal

at a point. For ease of visualization, we have used 1
cos(θ)

. This metric, although
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quick to compute, has the major drawback that it disregards depth. In fact, as the

bottom row of Figure 4.7 reveals, the cosine metric evaluates slightly better across

the distant face than across the front face. This is exactly the opposite of the

actual sampling behavior. In the front face, we also see some slight falloff as the

distance from the center of projection increases. This effect is not actually present

in the physical sampling and is an artifact of this metric. Last, note that over the

middle, oblique face in the scene, the cosine metric shows far too small of a range

in values compared to the correct, physically derived Jacobian.

The projected sensel area is a much better measure than the cosine, and is very

similar to the Jacobian metric presented in this thesis. In fact, the projected sensel

area is equivalent to the determinant of the Jacobian. However, this metric conceals

the directional information present in the full matrix form of the Jacobian. Because

of this, there is no way to extract sample distances or orientation information from

this metric. Figure 4.9 shows this problem graphically. Although the horizontal

sample distance varies widely across the top row of the illustrated sampling profiles,

the area of each projected sample is constant. In the second row, the angle of

the sampling varies up to 90 degrees. Not only does the determinant assign the

same value to each angle, it assigns the same value calculated for the sample

patterns in the top row! In contrast, the full Jacobian metric describes each of

these sampling patterns uniquely. Thus, although the determinant metric is similar

to the Jacobian metric, is cannot be used to understand the directional frequency

response of the imaging system for the environment. As shown in the middle row

of Figure 4.7, the determinant metric also generates values that are roughly the

square of the Jacobian values, due to its measure of area instead of distances. This

has the unfortunate result that the values derived from the metric no longer have a
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Figure 4.9: A comparison of the Jacobian metric to the determinant of the Ja-

cobian for several sample projections. All of these patterns evaluate to the same

determinant value, while the full Jacobian matrix preserves the actual sampling

behavior.
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direct relationship to the sample distance. Additionally, the directional component

information necessary to get back to that information has been discarded.

The new Jacobian-based sampling quality metric described in this chapter is

clearly superior to these other metrics. It is physically-based and measures actual

sample distances, either in world units or in texels. It preserves directional infor-

mation, and additionally, it is easy to compute, given a matrix for the imaging

transform. One potential application of this metric – detail synthesis – is demon-

strated in the next chapter.



Chapter 5

Detail Synthesis

In the last chapter, we introduced a metric for assessing the sampling quality of

image-based textures, based on the Jacobian of the imaging transform. Given

such a metric, we now return to the problem of extracting uniformly high quality

textures from few images. Recall that when textures are resampled from an image

some surfaces are well sampled – yielding good quality textures – but some (or

even most) surfaces are not. When a surface, or portion of a surface is poorly

sampled the extracted textures are of poor quality, appearing blurry or stretched.

This effect was demonstrated in Figure 4.1, which is repeated here as Figure 5.1 for

convenience. The middle row of images illustrates the sampling pattern over the

three faces of interest. The bottom row shows a portion of the textures resampled

from each of these faces. The textures for faces B and C show obvious visual

blurring and stretching defects.

Texture synthesis has recently been proposed [PKVG98, WL00, FJP02] as

an attractive way to correct deficiencies in resampled textures. However, exist-

ing applications of the technique have focused on either traditional texturing (in

texture-space only) or image-editing (in image-space only with no corresponding

geometry) – no research to date has demonstrated texture synthesis techniques for

image-based texturing, operating over the surfaces in an environment.

This chapter introduces a method for applying current texture synthesis tech-

niques to surface textures resampled from images, using the Jacobian-based sam-

pling metric introduced in Chapter 4. Our method has several inherent strengths

which differentiate it from current approaches. First, although we demonstrate our

51
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Figure 5.1: Sampling patterns in an environment. The top image shows the scene.

The middle row illustrates the sampling patterns over each surface of interest. The

bottom row shows the effects of the sampling pattern on the resampled textures.
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approach using an extension of the method presented by Wei and Levoy[WL00],

in theory any texture synthesis method may be used. Second, neither the tech-

nique, nor the Jacobian metric are restricted to planar surfaces. Last, and most

importantly, our approach preserves the lower frequencies present in the resam-

pled texture, adding only the correct high frequency detail. In this way, no good

data from the image is ever discarded. For this reason we call our approach detail

synthesis.

Because our approach relies on existing texture synthesis methods, we briefly

summarize texture synthesis algorithms before describing our detail synthesis al-

gorithm.

5.1 Texture Synthesis

Background work in texture synthesis was surveyed in Chapter 2. Recall that, in

general, texture synthesis is the problem of generating an arbitrarily sized texture

patch ‘similar to’ a given example patch, without tiling. We refer to the sample

patch as the source, and the generated patch as the target. First, a pyramid

representation is created for both the existing source texture and the potential

target texture. Current synthesis approaches have used Gaussian, Laplacian, or

steerable pyramids [KS96]. The source pyramid has data at every level and the

target pyramid is seeded with noise. The noise is generated so that its histogram

matches that of the corresponding level in the source pyramid. The pyramid for

the source texture functions as a Markov Random Field (MRF) modeling the

process which created the texture. This model is sampled using a simple best-

match operator to insert data into the target pyramid. A sample in the MRF

usually consists of some neighborhood at the level being filled, as well as some
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number of corresponding neighborhoods at higher levels (parent neighborhoods).

The target pyramid is filled from the top down, in scanline order, in order to take

advantage of multiresolution information and local spatial coherence.

The synthesis process is illustrated in Figure 5.2. Parent levels are hidden to

improve clarity. Figure 5.2 (a) shows a level of the source pyramid. Several samples

of the MRF are indicated as red neighborhoods. Although only five neighborhoods

are shown, an MRF sample (a neighborhood) exists for every pixel at this level.

The images in row (b) show the progress of the synthesis algorithm in the cor-

responding level of target pyramid. For each texel in the target, the algorithm

finds a texel in the source with the closest matching neighborhood, then copies

that texel into the target. Note that since the algorithm proceeds in scanline order

and uses causal neighborhoods, noise needs only to be injected into the target on

the left and bottom borders. The algorithm’s result for this level is shown in (c).

The resulting target level is significantly similar to the source level, but is in fact

unique. For additional details we refer the reader to the original texture synthesis

research referenced in Chapter 2.

Algorithms similar to the one described above work well for a variety of texture

types, but break down for others. In addition, the literature provides little guidance

regarding parameter tuning (e.g. neighborhood size and number of parent levels)

to improve the results. Because we use standard texture synthesis techniques

to obtain our results, our technique is limited by the same factors. In general,

detail synthesis performs well where existing texture synthesis techniques perform

well; it fails where they fail. However, our approach does not rely on any specific

synthesis algorithm, thus we can take advantage of any future improvements in

texture synthesis research to further improve the quality of our results. We now
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(a)

(c)

(b)

Figure 5.2: Traditional texture synthesis at work. (a) shows the source texture with

several neighborhoods indicated. Row (b) illustrates the progress of the synthesis

process. (c) shows the result of the synthesis.
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explain the proposed detail synthesis algorithm.

5.2 Detail Synthesis

5.2.1 Overview

The goal of the proposed detail synthesis approach is to create image-based textures

that have uniform frequency content for surfaces which are non-uniformly sampled.

Additionally, the process should not modify or delete any data in frequency bands

which are properly resampled by the texture reconstruction process. That is, data

should be added where it is missing, while preserving all of the texture data that

is present. This section gives an overview of our detail synthesis algorithm.

We begin with a texture of some surface with a high constant sampling rate,

which we designate as the source, and with a texture of some similar surface with a

lower, possibly varying, sampling rate, which we designate as the target. Observe

that the Jacobian-based metric proposed in Chapter 4 can be used to determine

which texture (among all similar textures in the scene) has the highest possible

uniform sampling rate.

In extending texture synthesis algorithms to image-based texturing we perform

the following steps:

1. Determine the best scaling of the source texture. This process uses

the Jacobian values to determine the scaling which produces the optimal

source texture resolution. A source texture of the indicated resolution is

extracted from the image.

2. Normalize the target texture with respect to the source texture

scaling. This results in a target texture with the same number of texels
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per world unit as the source texture. A target texture of the indicated

resolution is extracted from the image. The Jacobian metric for the target

is also recalculated, using the rescaled imaging transform. This yields a set

of values describing the sampling rate of the target relative to that of the

source.

3. Construct Laplacian pyramids for the source and target textures.

The height of the pyramids are determined by the lowest entirely valid level

of the target pyramid, as well as the number of parent levels (if any) used by

the synthesis algorithm.

4. Construct a validity pyramid for the target texture. The new pyramid

structure will store values indicating the validity of the corresponding texels

in the target Laplacian pyramid. The validity pyramid is initialized using

the Jacobian values of the normalized target texture.

5. Perform texture synthesis. Using the complete source pyramid and the

incomplete target pyramid (together with the validity pyramid), synthesize

the data still absent into the target pyramid, then reconstruct the texture.

Note the importance of the Jacobian metric both in selecting the optimal tex-

ture resolution, as well as in indicating degraded texture areas which require detail

synthesis. Specifically, the correlation between the maximum value of the Jacobian

metric and levels of a bandpass image pyramid is the key insight which allows the

extension of texture synthesis techniques to image-based texturing. The following

sections describe the entire process in greater depth.
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5.2.2 Determining the source texture scaling

The purpose of this step is to refine the mapping MTex (see Section 4.3), so that the

source texture is of such a resolution that it captures exactly the frequencies present

in the image data. Note that this is in general impossible, as the sampling rate will

generally not be constant across the entire surface, thus we use the conservative

resolution determination described below.

We begin by calculating the Jacobian matrix across the texture assuming that

MTex is the identity matrix (effectively J(M−1
Proj)), using the world space length of

the surface’s s and t directions as the initial texture resolution. Because the values

in the Jacobian matrix can be interpreted directly as sample distances, we can

take the largest of any of the four values across the surface as the largest distance

between any two samples from the image, in either the s or t directions. This

distance, k, is used as the conservative resolution scaling factor. We apply 1
k

to the

texture size values to get the new texture resolution. To adjust the matrix scaling

we use:

MTex =

















k 0 0

0 k 0

0 0 1

















(5.1)

Once k is determined, a source texture is extracted from the image. Intu-

itively, we have normalized the source texture such that all of the elements in the

texture have a Jacobian of ≤ 1. Therefore, the lowest level of the pyramid is fully

populated.

There is a side effect of using this conservative value, k, to bound the Jacobian

values over the surface. The resulting texture has only enough resolution to capture
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the data from the image at the point where the surface is most poorly sampled,

but not where it is most densely sampled, which implies that data is lost when

extracting the texture data from the image. This behavior is, however, desirable

for texture synthesis. If we were instead to select the minimum Jacobian value, and

thus had a texture resolution high enough to capture the most densely sampled

regions of the object surface, then there could be portions of (at least) the lowest

level of the Laplacian pyramid that would not contain any data. This would cause

portions of the MRF for the source texture to contain incomplete data and would

cause the synthesis algorithm to perform poorly.

5.2.3 Normalizing the target texture

We now wish to determine how the target texture sampling rate relates to that of

the source texture. We do this for two related purposes - first to extract a target

texture of an appropriate resolution, and second, to determine where texture data

in the target pyramid is valid.

For the target texture we use the same source scaling factor, k, and the source

MTex. After calculating the new target resolution using the scaling factor k, a

target texture is extracted from the image. Next the Jacobian metric is calculated

over the surface using the scaled imaging transform. Using the maximum of the

calculated Jacobian values over the target surface, the lowest completely valid level

of the target pyramid is calculated. The values of the Jacobian matrix across the

target texture now yield a quantitative comparison of the sampling between the

source and target surfaces. Note that the target texture is defined as the more

poorly sampled texture, so the values of the target Jacobian will generally be

larger than those of the source (i.e., the samples are more spread out).
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For example, if the Jacobian matrix for the target texture is constant across

the texture and is:

J(M−1
Img) =









2 0

0 2









(5.2)

then the sample distance in the target texture’s s and t directions is twice that

of the source texture. Thus the sample rate for the target is half that of the source,

as is the Nyquist frequency. In other words, the target is missing the highest octave

of frequency data present in the source.

5.2.4 Creating the Laplacian pyramids

The technique presented in this paper uses Laplacian pyramids [BA83] as the multi-

resolution image pyramid. Laplacian pyramids are formed using a ‘difference of

Gaussians’ operator, and are thus (approximately) bandpass at each level. The

frequency composition of an example pyramid is illustrated in Figure 5.3. The

bottom level (level 0) contains data from the spatial frequency band from the

Nyquist frequency, fN , to
f
N

2
. The next level up (level 1) contains data from the

spatial frequency band from
f
N

2
to

f
N

4
. In a pyramid with levels 0 to n (bottom to

top), level m : 0 ≤ m < n contains data in the spatial frequency band from
f
N

2m to

f
N

2m+1 . Level n contains data in the spatial frequency band from
f
N

2n to 0.

Because of the bandpass nature this data structure, another major benefit of

using Laplacian pyramids for detail synthesis lies in the method of reconstructing a

final texture from a pyramid. For a Laplacian pyramid, the texture is recovered by

repeatedly upsampling and merging levels, from the top down. Because the levels

are bandpass, this means that the data from higher levels ‘show through’ the lower
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Figure 5.3: An illustration of a Laplacian pyramid with three levels. Level 0

contains the frequencies from fN , to
f
N

2
. Level 1 contains the frequencies from

f
N

2

to
f
N

4
. Level 2 contains the frequencies from

f
N

4
to 0. Note that illustration does

not show pyramid data in order to preserve clarity.

levels. Thus, if there is valid pre-existing data in, for example, the top 3 levels of a

5 level pyramid, and synthesized data in the bottom 2 levels, then the pre-existing

low resolution data is preserved in the final texture, no matter what the results of

the synthesis for the high frequency data in levels 0 and 1. This characteristic of

the Laplacian pyramid is important in order for image-based textures to preserve

all of the information present in the images.

For the synthesis algorithm to compare similar frequency bands, the height of

the source and target pyramids must be equal. The pyramid height is calculated

by taking the lowest completely valid level of the target pyramid with data, as

determined above, and adding the number of parent levels that the synthesis al-
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gorithm will consider. Creation of the source and target Laplacian pyramids then

follows the standard algorithm. Figure 5.4 shows a Laplacian pyramid (a) for a

well sampled texture (c), as well as a pyramid (b) for a poorly sampled texture

(d). Note that there is significantly less information in the lower levels of (b) than

there is in the lower levels of (a). This is due to the lack of data in the higher

frequency bands.

5.2.5 Creating the validity pyramid

The knowledge that Laplacian pyramids are (approximately) bandpass, and that

the Jacobian gives a measure of sampling rate, suggests that there is a direct and

meaningful physical interpretation of their relationship. Simply, since each level

of the pyramid contains an octave of data, a texel with the largest entry in its

Jacobian matrix equal to r can only possibly contribute to data present at or

above the log2(r) level of the pyramid. This straightforward relationship gives

us a simple decision rule for deciding if a texel at a certain level of the pyramid

contains valid data by inspecting the corresponding value of the Jacobian metric

for the target texture.

Observe that one major benefit of using Laplacian pyramids is the direct rela-

tionship between the Jacobian values for a texture and the levels of the Laplacian

pyramid. As stated previously, the Nyquist frequency, fN is sampling rate
2

, and the

Jacobian texture quality metric yields values equal to the sample distance. So, if η

is the largest value of the Jacobian metric across the entire texture, then fN = 1
2∗η

.

If we assume that in some portion of the texture, the Jacobian metric is equal

to 1 (i.e., the sampling is perfect, and fN = .5), then the data in the remainder of

the texture can easily be assigned to the appropriate pyramid level. Regions with
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(a) Full Laplacian pyramid [from (c)]

(d) Poorly sampled texture(c)  Well sampled texture

(b) Partial Laplacian pyramid [from (d)]

Figure 5.4: Laplacian pyramids for a good source texture and a degraded target

texture.
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sampling rates between 1.0 and .5 cycles per pixel (capturing frequencies between

.5 and .25 cycles per pixel) would have data in and above level 0. Regions with

sampling rates between .5 and .25 cycles per pixel (capturing frequencies between

.25 and .125 cycles per pixel) would have data in and above level 1. Regions

with sampling rates between .25 and .125 cycles per pixel (capturing frequencies

between .125 and .0625 cycles per pixel) would have data in and above level 2. For

example, a region of an image with a Jacobian value of 3.2 has a sampling rate of

1
2∗3.2

= .15625 would have no data in the Laplacian pyramid lower than level 1.

With this information, creating a pyramid data structure containing validity

information for the target texture is relatively straightforward. An image pyramid

equal in size to the target Laplacian pyramid is created. The validity pyramid is

marked with a 1 if the frequency band corresponding to that level of the pyramid

could be sampled by the sensor, given the value of the Jacobian metric for the

corresponding location on the target texture. Otherwise it is 0.

The validity pyramid for a degraded texture is shown in Figure 5.5. The target

Laplacian pyramid is shown in (a) for the texture in (c). The validity pyramid (b)

was calculated from the Jacobian values for the surface displayed in (d).

5.2.6 Synthesis implementation

The actual synthesis is based on the algorithm by Wei and Levoy[WL00]. We

utilize a multi-pass sliding neighborhood approach that minimizes the sum of the

squared Euclidian distance between the pixel values in the target neighborhood

and pixel values in the neighborhoods of the search space. RGB values for all

pixels in the neighborhood are packed sequentially into vectors of pixel values.

The actual search uses a k-d tree to accelerate matching of the pixel vectors.
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(c) Target texture

(a)  Laplacian pyramid

(d) Jacobian metric over target

(b) Validity pyramid

0

5

Figure 5.5: The target Laplacian pyramid is shown in (a) for the texture in (c).

The validity pyramid (b) was calculated from the Jacobian values for the surface

displayed in (d). The Jacobian values range from approximately 1.0 to 5.2, as

shown by the color bar to the right of (d).
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We believe that this application of detail synthesis to image-based model tex-

tures is unique. Wei and Levoy[WL00] and Freeman, et al.[FJP02] have demon-

strated the use of synthesis techniques as image editing tools, where the synthesis

was performed in image space. The quality metric and pyramid creation technique

presented in this thesis are significant in allowing the application of these methods

to textures on the surfaces of imaged objects.

5.3 Results

5.3.1 Image acquisition and modeling

All of the real-world examples were photographed with a Canon EOS D30 digital

camera. Images were acquired in RAW mode (12 bits per pixel) at 2160x1440

resolution, and were demosaiced and converted to gamma-corrected 24-bit as well

as linear 48-bit TIFs using the Canon-provided software with no contrast or satu-

ration adjustment. The camera intrinsic parameters and distortion term were cal-

ibrated with the Intel Camera Calibration Toolbox for Matlab[Cal], and the opto-

electronic conversion function was confirmed to be linear using HDRShop[HDR]

and ISO14524[ISO]. Although the general camera model can account for sensor

elements that have non-orthogonal and differently sized x and y dimensions, our

particular image sensor was verified to have square sampling aperture and orthogo-

nal sensel rows and columns. Geometrically, the camera is modelled as a standard

projective pinhole camera, and includes radial and tangential distortion param-

eters. As shown above, the Jacobian measure can account for image distortion;

however, to accommodate our image-based modeling software we undistorted the

images prior to modeling.
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The real-world scenes were modelled with commercially available image-based

modeling software (RealVIZTMImageModelerTM), and exported to our system us-

ing VRML. The camera extrinsic parameters were automatically calculated by

ImageModelerTMduring the modeling process and exported with the VRML file.

The linear, 48-bit images were used for the actual detail synthesis. These images

were found to give superior quality when compared to the gamma-corrected, 24-bit

images.

5.3.2 Rendered bricks

The brick cubes shown in Figure 5.6 were rendered at 800-by-600 using Discreet

3DSMaxTM, then modelled again using ImageModelerTM. The front face of the

front cube (A) was used as the source texture; the side of the middle cube (B) and

the front of the back cube (C) were the target textures. After re-scaling MTex the

maximum Jacobian value for the side face was approximately 4.89, with a large

range due to the angle of the surface. The maximum Jacobian value for the back

face was approximately 2.35, and was fairly constant across the surface.

Synthesis results are shown in the bottom row of Figure 5.6, for textures B

and C. Texture A was used as the source, and is thus unchanged. The synthesis

algorithm used pyramids with 5 and 4 levels, for the middle and back faces, respec-

tively. The algorithm used 2 passes with 7x7 neighborhoods to generate the results

shown. Our technique was able to inject enough high frequency data in a correct

manner to noticeably sharpen the output textures. Notice also that the algorithm

preserves the low frequency information (present in the color of the bricks) instead

of writing over this with data from the source texture.
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Original

Texture

Synthesized

Texture

A

B
C

A B C

Figure 5.6: Detail synthesis results for the synthetic brick scene. The middle row

shows the original textures resampled from the image at top. The bottom row

shows the results after detail synthesis. The texture for A was used as the source

texture, and thus was not changed. The textures for B and C had significant

degradation which was corrected by our technique.
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5.3.3 Building columns

The results shown in Figure 5.7 are from Olin Library on the Cornell University

campus. The image was taken with the Canon D30 camera described above.

The front-facing side of the nearest column (A) was used as the source. The

corresponding faces of the third (B) and fourth (C) columns were used as the

targets. After re-scaling MTex the maximum Jacobian values for the target textures

were approximately 2.4 and 3.1, respectively,with only a small range across each

surface. The synthesis algorithm used pyramids with 4 levels, and used 4 passes

with 5x5 neighborhoods to generate the results shown.

As the results show, the synthesis correctly inserts higher frequency data into

the target texture. The overall brightness of the target is preserved, even though

the source texture is much brighter than the target. Although the mortar lines

between the stones are not as clear as in the source, we believe that the result is

promising, given the difficulty of this type of surface for current texture synthesis

algorithms. The effects are subtle, but present. The strong differences in illumi-

nation and coloration between the source and the targets, as well as differences in

structure, have all been overcome.

5.3.4 Pavement

The input images for these results were also imaged with the Canon D30. The

image shown in Figure 5.8 was used to resample the target texture, which is shown

outlined in red. A portion of the original resampled texture is shown in b). After

re-scaling MTex the maximum Jacobian value for the target texture was approxi-

mately 7.6, with a large range across the surface. The synthesis algorithm used a

pyramid with 5 levels, and used 2 passes with 5x5 neighborhoods to generate the
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A

B

C

A B C

Original

Texture

Synthesized

Texture

Figure 5.7: Results for columns along the face of Olin library. The front facing

side of the nearest column (A) was the source. Both the third column (B) and the

fourth column (C) have been synthesized. Although improvement is subtle, the

result textures have a full extra octave of data.
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(a)

(c)(b)

Figure 5.8: Results for a paved pedestrian walkway. The image in a) was used to

resample the texture for the target pavement section (outlined in red). A portion

of the original texture for this pavement section is shown in b). The results after

synthesis are shown in c). The texture portion shown in d) shows the source

texture (resampled from another image).
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results shown.

Once again, the results show that the synthesis correctly inserts higher fre-

quency data into the target texture. For example, the sharp border of the cement

on the right is correctly synthesized by our algorithm. Also, unique low frequency

characteristics of the target, such as the general lightness of the cement, are pre-

served. We would expect texture synthesis algorithms to perform well on this type

of surface, which is supported by the quality of our results. However, without our

technique significant user intervention would be required to accurately reproduce

appearance characteristics unique to this imaged environment, for example, the

high frequency data on the borders.

5.3.5 Moroccan Doors

The input images for these results were scanned using a Umax Powerlook 2100XL

flatbed scanner. One image, shown in Figure 5.9 a) provides an overview of the

doors, from which a region was cropped for use as the target texture. The detail

photograph shown in Figure 5.9 b) was used as the source texture. The scale dif-

ference, and thus the maximum relative Jacobian value, between the door overview

and the detail photo, was calculated to be approximately 4.0. The synthesis algo-

rithm used a pyramid with 4 levels, and used 1 pass with 5x5 neighborhoods to

generate the results shown.

A comparison of the resulting texture to the original texture is shown in c) and

d). Figure 5.9 c) shows the target texture at the scanned resolution, with a region

zoomed to illustrate the loss of detail under magnification. Figure 5.9 d) shows

the result texture rescaled to be the same size as c). However, an examination of

the same zoomed region shows that the detail synthesis algorithm has successfully
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(a) (b)

(d)(c)

Figure 5.9: Results for a Moroccan door. An image of the set of doors is shown in

a). A detail image is shown in b). A cropped image of the door panel is shown in

c), with a blow up showing the lack of detail. The results of detail synthesis are

shown in d). Here, the synthesized door panel reveals the intricacies of the inlaid

wood pattern.
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added a great deal of the detail of the tiny, intricate, inlaid wood pattern.

This set of results not only provides positive validation of our detail synthesis

technique, but also illustrates how the Jacobian metric can be used to extend the

similar image sharpening approach introduced by Freeman, et al [FJP02].

In summary, this chapter has demonstrated the first application of texture

synthesis to image-based texturing that accounts for and preserves all information

in the original image. This is made possible only because the Jacobian metric

presented in this thesis has a direct physical interpretation in terms of sample

distances in the scene, and therefore also has a direct relationship to levels of a

bandpass image pyramid.



Chapter 6

Future Work and Conclusions

The results shown in this thesis have both theoretical and practical implications.

As a theoretical formulation, the Jacobian-based sampling metric has a powerful

descriptive value. Although this thesis has presented only the metric only in a form

suitable for planar surfaces, the analytical forms for higher order surfaces should

be straightforward to derive. Furthermore, the Jacobian metric contains far more

information than we have made use of with our ‘worst-case’ single value measure. A

close analysis of the directional components of the Jacobian will be of great use for

any application that requires access to data on the orientation and eccentricity of

the sampling. For example, some applications may find value in using the SVD of

the Jacobian, which can be used to yield three matrices: two rotation matrices (one

relative to each basis) and a scaling matrix. Other applications may wish to use

data structures or techniques (such as wavelets) which might preserve orientation

information across multiple scales.

The practical results of our detail synthesis technique show that the method

has great promise, despite suffering from the shortcomings inherent in all texture

Markov Random Field-based texture synthesis methods. The results show obvious,

realistic sharpening of visually degraded textures, even for scenes with repeating

structures and large intensity differences – generally pathological situations for

current approaches. It achieves this performance by utilizing the correctly sampled

low frequency portions of the texture to drive the synthesis of the high-frequency

bands. We expect the results to improve even further with future advances in

texture synthesis. Specifically, research providing metrics for neighborhood size

75
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and the number of parent levels required by the algorithms would remove the

main source of errors in the texture synthesis process.

In summation, this thesis has introduced two contributions to the field of

image-based computer graphics. First, we have shown a physically-based met-

ric of sampling quality, based on the Jacobian matrix of the imaging transform,

which captures the interaction of the imaging system with the imaged environ-

ment. The use of the metric has been demonstrated for extending current texture

synthesis methods to image-based texturing processes. Second, the use of the sam-

pling metric enables a process we refer to as detail synthesis, which creates of high

spatial frequency detail into a poorly sampled texture, while preserving existing

low frequency texture data. This technique allows the creation of uniform, high-

resolution textures. As we have noted previously, our synthesis approach relieves

the user of the burden of collecting large numbers of images and increases the

quality of user-driven image-based modeling systems. As a result of our research,

it is now possible to achieve better, more accurate renderings of surfaces for use in

texture-mapping routines commonly used in image-based computer graphics and

image synthesis.
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