
ITERATIVE ADAPTIVE SAMPLING FOR ACCURATE

DIRECT ILLUMINATION

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Michael Donikian

August 2004

c© 2004 Michael Donikian

ALL RIGHTS RESERVED

ABSTRACT

This thesis introduces a new multipass algorithm, Iterative Adaptive Sampling, for

efficiently computing the direct illumination in scenes with many lights, including

area lights that cause realistic soft shadows. Real world architectural scenes fre-

quently contain large numbers of lights; however many current algorithms do not

scale well in performance when rendering these types of scenes.

Our algorithm is based upon an observation that although many hundreds of

lights may contribute to the illumination of a single image, much lower lighting

complexity typically exists on a localized basis within subsections of the image.

Since the predominant cost of computing the direct illumination at a point is the

testing of light source visibility, our algorithm works to exploit this observation of

low localized lighting complexity to reduce the number of visibility tests (shadow

rays) needed to accurately render each pixel.

This reduction of shadow rays is made possible by sampling light sources in

proportion to their actual contribution to a pixel’s luminance value. We do this

by iteratively modifying a probability density function (PDF) until it adaptively

captures the local lighting configuration. We use sample data collected during

rendering as feedback to drive the optimization of the PDF. Our algorithm takes

advantage of coherence in image space by aggregating sample data on both a per-

pixel and per-block level as well as coherence in world space by aggregating sample

data on light clusters. We have tested this algorithm on several complex lighting

environments and demonstrated roughly an order of magnitude improvement over

standard procedures.

Biographical Sketch

Not much is known about Michael Donikian since he tends to be pretty bad when

it comes to writing these biographical sketches. They say he grew up on the mean

streets of New York City and decided to come to Ithaca to pursue his undergraduate

and graduate education. It is rumored that he will be moving to Florida as soon

as this thesis gets published... something about the government wanting him.

iii

For great justice...

iv

Acknowledgments

First of all I would like to thank my advisor Professor Donald P. Greenberg for

giving me the opportunity to study here at the PCG. It was a wonderful oppor-

tunity to learn new things and to get a good perspective on the research world of

Computer Graphics.

I would also like to thank the “Many Lights” team of Bruce Walter, Kavita

Bala and Sebastian Fernandez. I will miss the times we spent together over a cup

(or two, or three, or four...) of espresso. I probably won’t miss the crazy late hours

we all put in for those two papers, but I’ll have fond memories of how hard we all

worked together.

I’d also like to thank the following people, groups, organizations, places, sports,

and miscellaneous items.

• The Air Force Institute of Technology (AFIT) for offering me a chance to

pursue a master’s degree for my first assignment as an active duty Air Force

officer.

• All my program managers at AFIT (Major Melissa Flattery and Lieutenants

Angela Bjorge, Sharmine Lynch, and Timothy Adams) for helping me get

through this and working with all my leave and extension requests.

• Captain Anthony Gamboa at the Air Force Personnel Center, for being pa-

v

tient with me and working with me on my getting next assignment.

• The Air Force Research Lab in Rome NY, specifically people in IFSB I worked

with on a daily basis. If it wasn’t for my very positive experience there, I

probably would not have chosen Computer Graphics as something I’d like to

pursue in greater depth. I’d especially like to thank Jason Moore and Steve

Farr for writing recommendations and Chad Salisbury for getting me into

motorcycles and helping me pick one out.

• Professor Julia D’Souza for being my minor advisor and for opening me up

to finance and management.

• Adam Kravetz, for introducing me to road and mountain biking. It’s some-

thing I’ll probably take with me for the rest of my life. And of course, how

can I forget all the crazy conversations about “high-quality problems” we

had while spending our final weeks in the lab finishing up our theses.

• Jacky Bibliowicz, for pursuing an “unofficial minor” with me on a most

interesting topic. We have some great stories to tell for years to come.

• Henry Letteron, for bringing in all the food and candy every day and for

playing a couple of innings of office baseball with me.

• Vikash Goel, for all the time you spent with me on my car and for all the

interesting conversations on automobile technology.

• Will Stokes, for his random commentary.

• Hurf Sheldon, for tipping the scales in favor of getting a motorcycle and

of course for all the work you do maintaining our network and computer

systems.

vi

• Linda Stephenson, for keeping me on Don’s radar at all times and for helping

me fax all those things to the Air Force. I don’t know if I would have been

able to graduate if you had not been around.

• Peggy Andersen, for keeping a well stocked cabinet of office supplies, for

helping me buy whatever software I needed, and for offering to help me

finish this thesis in every way possible.

• Moreno Piccolotto, for getting me (and half the lab) hooked on espresso.

• Martin Berggren, for helping me figure out how to use all the lab’s au-

dio/video equipment.

• Mary, for keeping our offices clean and for feeding us when we’re overworked

and starving.

• John Mollis, for being a cool laid-back officemate and for having someone

with whom to go on motorcycle rides.

• Ryan Ismert, for helping me pick out cool classes for my minor.

• Jeremiah Fairbank, for answering all my questions on using 3ds max.

• Alex Liberman, for really coming through and helping me move.

• Taekwondo, Boxing, the Teagle Hall weight room, Golf, and the roads of

Tompkins County for being an outlet for my excess physical energy.

• Everyone at AFROTC Det 520 – Colonel Donald Hoover, Majors Byron

Breese and Tracy Higgins, Captain Michael Mowry, Sergeants Robert Roy

and Sara Heit, and of course what would I do without Helen Jessop and all

the verbal smack-talk battles we had going over the course of two years.

vii

• Kevin Seaman, for introducing me to boxing (and a whole lot of other martial

arts), for giving me a new way to look at the world and for making me a

much better athlete.

• David D, for all the humor and for showing me the lesson to take away from

a negative experience.

• Tool, Disturbed, System of a Down, A Perfect Circle, Linkin Park, The Bea-

tles, Metallica, Rage Against The Machine, The Offspring, Staind, Evanes-

cence, Papa Roach, Stone Temple Pilots, Earshot, Econoline Crush, Year of

the Rabbit, Korn, Limp Bizkit, Godsmack, Taproot, Chevelle, Adema, Cold,

and Megadeth, for giving me something to listen to while I wrote this thesis.

• Master Han Cho and the members of Sport TKD, who have been like a

second family to me during my six-year stay at Cornell. We’ve shared both

the good times and the bad.

• and last but not least, my parents, for always being there for me.

The views expressed in this article are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense,

or the U.S. Government.

viii

Table of Contents

1 Introduction 1

2 Related Work 5
2.1 Background . 5

2.1.1 Types of Light Sources . 5
2.1.2 Rendering Equation . 6

2.2 Single Light Techniques . 7
2.3 Many Light Techniques . 10
2.4 Environment Maps . 12
2.5 Conclusion . 15

3 Iterative Adaptive Sampling 16
3.1 Characteristics of Architectural Scenes 17
3.2 Monte-Carlo Integration . 19

3.2.1 Choosing probability functions 20
3.3 Rendering with Multiple Passes . 22

3.3.1 Design Goals . 22
3.3.2 Algorithm Overview . 24
3.3.3 PDF Construction and Refinement 27

3.4 Clustering . 28
3.4.1 Ideal Cluster Properties . 30
3.4.2 Hierarchical Light Clusters 31

3.5 Implementation . 32
3.5.1 Preprocessing a block . 32
3.5.2 Sampling at a point . 34
3.5.3 Computing the pixel estimate 36
3.5.4 Storing statistics and constructing PDFs 37

3.6 Adaptive Anti-Aliasing . 43
3.6.1 Requirements . 43
3.6.2 Approach . 43
3.6.3 Implementation . 44

ix

4 Results 48
4.1 Test Setup . 49

4.1.1 Algorithm Comparison . 49
4.1.2 Models . 49

4.2 Reference Solution Implementation Details 55
4.3 Resulting Images and Execution Timings 56

4.3.1 Quantitative Comparison . 56
4.3.2 Qualitative Comparison . 57

4.4 Visualizations and Detailed Results 62
4.4.1 Visibility and Occlusion . 62
4.4.2 PDF Adaptation . 64
4.4.3 Clustering . 64

4.5 Performance and Efficiency Analysis 67
4.6 Implementation Details . 67

4.6.1 Shadow Rays Density per Pass 67
4.6.2 Avoiding Undersampling . 68
4.6.3 Anti-Aliasing . 69
4.6.4 Termination Condition . 70

5 Conclusion 73

A Proofs and Equations 76
A.1 Statistics . 76
A.2 Minimizing Cluster Variance . 78

Bibliography 81

x

List of Tables

4.1 Model Statistics . 50
4.2 Same Quality Rendering Time Performance Results 56
4.3 Same Quality Light Sample Count Performance Results 57
4.4 Visibility Statistics . 63
4.5 Clustering Statistics . 66
4.6 Additional Per Pixel Statistics . 70

xi

List of Figures

3.1 Visualization of Grand Central Terminal 18
3.2 Exitant Radiance vs. Irradiance . 21
3.3 A scene demonstrating the efficiency of three different PDFs. . . . 23
3.4 Overview of multipass algorithm 25
3.5 The weights used to combine PDFs. 28
3.6 Example of different appropriate light clustering 29
3.7 A graphical representation of step 1 of the multipass algorithm

showing how we compute the surface intersection points for each
pixel and the cuts through the cluster hierarchies for each point. . 34

3.8 An example demonstrating the need for varying levels of sample
granularity . 39

3.9 Combining sampling statistics based on surface normals 42
3.10 Adaptive Anti-Aliasing . 46

4.1 Kitchen Model . 51
4.2 Kitchen with Environment Lighting 52
4.3 Ponderosa . 53
4.4 Grand Central Terminal . 54
4.5 Grand Central Terminal Qualitative Comparison 58
4.6 Kitchen Qualitative Comparison 59
4.7 Kitchen with Environment Lighting Qualitative Comparison 60
4.8 Ponderosa Qualitative Comparison 61
4.9 Average Light Source Visibility False Color Visualizations. Blue

represents surfaces where a great majority of the lights are oc-
cluded while red represents surfaces that have a greater number of
contributing lights. 63

4.10 Figure showing PDF Adaptation over multiple passes 65
4.11 Number of Rendering Passes Performed per Pixel 71

xii

Chapter 1

Introduction

Real world architectural scenes contain many lights. In computer graphics models,

a light can be represented by a point light approximation or by a light source with

a finite area. Area lights are critical for physically-correct rendering because they

cast realistic soft shadows unlike the synthetic-looking hard shadows of point lights.

In addition, soft shadows are important because they provide visual cues on the

relative positioning of objects through the hardness of the shadow boundary. We

can also approximate light coming from distant sources such as skylight by using

an environment map. Environment maps are an effective means of adding natural

outdoor lighting effects to a scene and can further enhance the realism of our

rendering.

This realism comes at great cost however, as rendering shadows from large

numbers of lights in general, and area lights and environment maps in particular,

can be very computationally expensive. This cost is dominated by the casting of

shadow rays to determine the visibility of the lights. For area lights and envi-

ronment maps, visibility can be especially difficult to predict since these types of

lights can have varying degrees of partial visibility.

1

2

Many current direct illumination algorithms are able to efficiently render soft

shadows from area lights, but their execution time scales linearly with the number

of lights in the scene. Since real world scenes often contain more than just a few

lights, there exists a need for algorithms that scale sub-linearly in the number of

lights. Some of the algorithms that are designed for scenes with many lights are

dependent upon high occlusion where a majority of the lights present in the scene

are not visible in a single image, but this is not always the case. We have made

a set of observations regarding light source visibility and have found that in many

architectural scenes there could be hundreds of lights visible in a single image. In

contrast, we have noticed that on average at a single point only about 4-35% of

the lights in the scene are visible. This work introduces an iterative multipass

rendering algorithm that takes advantage of our finding that scenes with high

global lighting complexity often contain low local lighting complexity.

Our algorithm divides the image into 8 × 8 pixel blocks for processing. Cre-

ating the image block-by-block allows our algorithm to have a compact memory

footprint. It also exploits the fact that the illumination within a small region of

the image will be relatively simple and coherent. Within each block we also sub-

divide into a characteristic set of surface points that can accurately represent the

underlying geometric and shadow boundaries. For each surface point within the

block, we construct a probability density function (PDF) over the light sources

and then sample it to estimate the illumination using a small number of shadow

rays. In the simple case, we use only one surface point per pixel. If an anti-aliased

image is desired, we generate multiple surface points per pixel.

Rendering time will depend upon how similar the PDF is to the function rep-

resenting the illumination coming from the light sources. The mean value of the

3

light samples will quickly converge to be visually indistinguishable from the actual

illumination if the PDF is a good estimate; however, finding a good PDF is a

difficult task because it requires knowing the solution to the problem we are trying

to solve. Our algorithm starts with a simple PDF and uses the resulting sample

data to modify the PDF in between rendering passes over the image block. Each

subsequent rendering pass will use an adaptively improved PDF constructed using

feedback from samples computed thus far.

We construct our PDFs using a range of sample granularities over the image

plane: a coarse granularity of 8×8 pixel blocks and a finer granularity of per-pixel

sample data. We create block- and pixel-based PDFs between each pass, using

all sample information from previous passes to refine our sampling PDF while

ensuring that the resultant sampling PDF is unbiased. A weighted combination of

these PDFs initially uses block information to guide sampling. As more samples

are collected the pixel PDFs get increasingly more accurate and therefore are

used to guide adaptive sampling. By using locally-adaptive PDFs, our algorithm

evaluates significantly fewer shadow rays than a standard ray tracer to achieve

the same image quality. Since tracing shadow rays is the dominant cost in a ray

tracer, our performance improvement is a direct result of our adaptive PDFs. Our

algorithm evaluates significantly fewer shadow rays than previous approaches, yet

provides the same level of quality.

For efficiency, we also cluster light sources to aggregate visibility information

on a spatial basis over several lights. This clustering of light sources also reduces

the effective number of lights in the scene, which allows us to more efficiently build

our PDFs. In addition we use the clusters to stratify our sampling of the light

sources for the radiance calculation at each surface intersection point.

4

Since our system takes advantage of coherence in both image space and world

space, we have been able to reduce the time it takes to render scenes with many

point lights and area lights. We have achieved speedups of nearly one order of

magnitude for complex lighting environments including scenes containing direct

illumination from scenes with many point lights, area lights, and environment

maps.

In the following chapter (Chapter 2), we will provide some background on direct

illumination concepts and also explore some of the previous work that has been

done to accelerate direct illumination rendering. In Chapter 3 we will discuss how

our algorithm is specifically designed to render scenes with complex lighting. In

Chapter 4, we will show the effectiveness of our algorithm by comparing our results

to that of an industry standard reference solution. Chapter 5 will be the conclusion

and summary of the benefits and contribution our approach to rendering direct

illumination for complex scenes.

Chapter 2

Related Work

The beginning of this chapter will discuss some of the background behind direct

illumination, ray tracing, and Monte Carlo integration. The rest of this chapter

will provide a summary of previous work relating to direct lighting starting with

techniques designed for accurately and efficiently rendering area lights and transi-

tioning to techniques designed to handle scenes with many lights. The end of this

chapter will also cover some of the research that has been conducted regarding

direct illumination from environment maps.

2.1 Background

2.1.1 Types of Light Sources

There are many different types of light sources in computer graphics. The simplest

is the point light source in which light is emitted from an infinitesimally small point.

Point light sources can be omni-directional and emit light evenly in all directions,

or they can have an arbitrary directional distribution or orientation. Directional

5

6

light sources are point lights that are infinitely far away and emit light in the same

direction regardless of the point in the scene they illuminate. The sun can be

approximated by a directional light source over small surfaces on the earth such

as a building or a small town. Area light sources emit light from a surface of finite

area. We can best represent real world light sources by area light sources, but

unfortunately they are very difficult to accurately render in computer graphics.

Like point light sources, area lights can also be omni-directional (e.g. a sphere),

or oriented (e.g. a planar surface). Another source of lighting is the environment

map. We discuss this in more detail in section 2.4.

2.1.2 Rendering Equation

Computing the direct illumination at a point involves integrating the contributions

from all the lights in the scene as:

L(~x) =

∫
S

V (~x, ~y) fr(~x, ~y) Le(~x, ~y) G(~x, ~y) d~y (2.1)

where

• L(~x) is the exitant radiance reflected from a point ~x toward the eye due to

direct illumination.

• S is the set of light sources

• ~y is a point on a light source

• V (~x, ~y) is the visibility of ~y from ~x

• fr(~x, ~y) is the BRDF (Bidirectional Reflectance Distribution Function) at

point ~x evaluated for the viewing and light direction. It defines how lights

7

bounces when it strikes a surface and represents the material properties of a

point ~x.

• Le(~x, ~y) is the emitted radiance from ~y in the direction of ~x

• G(~x, ~y) is purely geometric and depends on the type of light we are dealing

with and its orientation and distance from ~x.

In simple cases, such as scenes with only a few point light sources, this equation

can be solved exactly using ray tracing. Ray tracing is also an effective solution

for computing direct illumination at interactive rates for simple scenes. As the

complexity of the scene, lights, and materials increases, the cost of an exact direct

illumination solution rapidly becomes prohibitive. This cost is usually dominated

by determining visibility which is expensive to compute and difficult to predict. As

a result, most direct illumination algorithms have focused on reducing the cost of

evaluating visibility or finding ways to avoid the evaluation entirely. The remainder

of this chapter will examine some of the techniques that have been developed to

accomplish this goal.

2.2 Single Light Techniques

The techniques that follow are optimized for computing the illumination and shad-

ows due to a single area light source. They can be used on scenes with more lights

but run time complexity will scale linearly with light count. Rendering times will

be unacceptably high for scenes with hundreds of lights, thus they are best used

for scenes with low lighting complexity.

Amanatides [Ama84] introduce a technique called Cone Tracing. Assuming

circular or spherical light sources, they construct a cone from the point to be ren-

8

dered to the light source. The proportion of the cone obstructed by scene geometry

indicates the intensity level of the penumbra or soft shadow region. This approach

has two problems. First, it assumes spherical or circular light sources. Second,

analytical intersections with cones can be expensive to compute for arbitrary ge-

ometry.

Stewart [SG94] analytically computes the umbral and penumbral discontinuity

events for every light against every object in the scene. This information is then

used to generate a mesh that will not cross lighting discontinuities. This approach,

while effective, is limited to purely polygonal environments. Furthermore, the

algorithm identifies discontinuities which may not be perceptually apparent in an

environment with many lights and thus is overly conservative.

Soler and Sillion [SS98] approximate soft shadows for interactive viewing using

an image-processing approach. They find objects that are at similar distances from

the light plane and project them onto a single plane. They then take advantage

of the fact that when the light, occluder, and receiver lie on parallel planes, the

shape of the shadow is a convolution of the shape of the light with the shape of

the occluder. Using hardware convolution, they obtain soft shadows at interactive

rates but unfortunately this approximation breaks down when the occluders are

mostly perpendicular to the light source.

Hart et al. [HDG99] use an image-plane based flood-fill to propagate occluder

information from pixel to pixel. With a list of the blockers affecting each light

at each pixel, and under the assumption that the environment is polygonal, they

were able to analytically compute soft shadows for environments with reasonable

complexity, though it was never tested with real world architectural scenes.

Parker et al. [PSS98] render soft shadows by casting an individual ray per-pixel,

9

per-light and modulating the visibility based on how close the ray came to inter-

secting an object. Although this approach can quickly generate approximations

of soft shadows, the algorithm has problems dealing with multiple occluders. It is

also limited in that it can only work with spherical light sources and it is unclear

how well it would perform under greater lighting complexity.

Agrawala et al. [ARHM00] present two approaches to dealing with area lights.

The first combines multiple shadow maps into a single layered shadow map. This

allows for fast soft shadows but introduces significant errors since interpolation of

shadow maps can be an inaccurate approximation. Their second approach com-

putes soft shadows by densely sampling the light source, but relying on coherence

in the shaded points to reduce the number of actual cast shadow rays. One draw-

back is that this approach must reproject a potentially large number of occlusion

points per light. Such an approach does not scale well when the environment

consists of a large number of lights.

Akenine-Moeller [AMA02] and Assarsson [AAM03] approximate the soft shad-

ows cast by area lights through the use of “penumbra wedges”. The algorithm

operates in two stages, first determining a hard shadow through shadow volumes

as if only the center of the light was illuminating the scene. The second pass at-

tempts to correct the visibility by computing the amount of light coverage along

the silhouette of the occluding object. This approach generates realistic-looking

soft shadows at interactive rates for individual lights. However, because they gen-

erate the shadows cast by each object independently, they cannot correctly render

shadows cast by multiple objects whose shadows overlap.

10

2.3 Many Light Techniques

When dealing with real world scenes that contain hundreds of lights, it is critical

to use an algorithm that is specifically designed for the task. There are several

publications that deal explicitly with the problem of rendering scenes with large

numbers of lights. The scalability of these algorithms with respect to the number

of lights has not yet been clearly studied, but they certainly reduce the cost of

rendering scenes with many lights. Some algorithms are designed for still images

while other are designed for interactive use.

Ward [War94] accelerates the rendering of many lights using a user-specified

threshold to eliminate lights of low importance. For each pixel in an image, the

system sorts the lights according to their maximum possible contribution (assuming

no occlusion). Occlusion for each of the largest possible contributors at the pixel

is tested, measuring their actual contribution to the pixel, and stopping when

the total energy of the remaining lights reaches a predetermined threshold. This

approach can reduce the number of occlusion tests; however, it does not reduce

the cost of the occlusion tests that do have to be performed and does not do very

well when illumination is uniform.

Shirley et al. [SWZ96] propose an approach that subdivides the scene into

voxels and, for each voxel, partitions the set of lights into an important set and an

unimportant set. Each light in the important set is sampled explicitly. One light

is picked at random from the unimportant set as a representative of the set and

sampled. The assumption is that the unimportant lights all contribute the same

amount of energy.

To determine the set of important lights, the authors construct an “influence

box” around each light. An influence box contains all points on which the light

11

could contribute more than the threshold amount of energy. This threshold is

assigned somewhat arbitrarily and not according to any perceptual metrics. This

box is intersected with voxels in the scene to determine when the light is important.

This is an effective way to deal with many lights when rendering static scenes

and viewpoints. The chief drawback of this system is that it does not include the

visibility term in the calculation of the influence box. Consequently, this algorithm

is ineffective if there are occluders near the bright lights.

Paquette et al. [PPD98] present a light hierarchy for quickly rendering scenes

with many lights. This system builds an octree around the set of lights, subdividing

until there are less than a predetermined number of lights in each cell. Each octree

cell then has a “virtual light” constructed for it that represents the illumination

caused by all the lights within it. They derive error bounds which can determine

when it is appropriate to shade a point with a particular virtual light representation

and when traversal of the hierarchy to finer levels is necessary. Their algorithm

can deal with thousands of point lights. The major limitation of this approach is

that it does not take visibility (i.e., occlusion) into consideration.

The techniques previously mentioned can substantially reduce the amount of

time to render scenes with high lighting complexity; however, even though they

are aimed at producing high quality individual images, they still do not offer any

form of efficient anti-aliasing. Anti-aliasing must be done through supersampling

which can greatly increase the cost of rendering. In addition they all oversimplify

the problem by ignoring the effect of the visibility term in their calculations. Some

of them produce incorrect results, while others are just inefficient. In contrast, the

techniques described below are designed for interactive use and typically produce

artifacts and other rendering errors.

12

Fernandez et al. [FBG02] deals with scenes with many lights in an interactive

setting. They voxelize the scene and maintain a list of visible lights and potential

blockers for each voxel. This list is found through stochastic sampling which occurs

asynchronously from rendering. Their system provides an order of magnitude

speedup for small to medium sized scenes. They achieve good performance because

they avoid evaluating shadow rays for lights that are either fully visible or fully

occluded; however, it is unclear that their algorithm can scale to scenes with

hundreds of lights or millions of polygons.

Wald et al. [WBS03] render complex environments of millions of polygons and

thousands of lights at interactive rates. They do so by constructing a probability

density function (PDF) of the light sources for the current image using a few paths

in a path tracer. This PDF is then used to determine which lights to render for

the current image. However, in order for this approach to work efficiently, they

require environments with very high occlusion, where only a small number of light

sources affect the illumination in any particular viewpoint.

2.4 Environment Maps

An environment map is an image that represents an infinitely far away background.

Each pixel in an environment map translates to light coming from a specific di-

rection from the background. In 1976, Blinn and Newell [BN76] introduced en-

vironment map rendering to computer graphics. They rendered realistic specular

reflections off of surfaces by looking up the pixel values in the environment map.

In 1986, Greene [Gre86] followed up on this work and also demonstrated how one

could generate an environment map from a real world scene by using a fish eye

13

lens. Environment maps as used in these two papers are known more specifically as

irradiance environment maps because each pixel has an irradiance value associated

with it.

Miller and Hoffman [MH84] extended Blinn and Newell’s original work by also

using the environment map to render diffuse reflections. Prior to rendering they

prefiltered the environment map by convolving it with a diffuse Bidirectional Re-

flectance Distribution Function (BRDF). The resulting image was termed a radi-

ance environment map since the pixel values represented exitant radiances leaving

the surface for a particular normal.

Cabral et al. [CMS87] showed how to efficiently convolve environment maps

with glossy BRDF’s by expanding the BRDF into spherical harmonics (SH). Be-

cause gloss is a view dependent reflection their rendering approach is limited to

a single camera view. Since they only use a low number of SH coefficients, they

are also limited to broad gloss lobes. In 1999, Cabral et al. [CON99] extend this

work to allow a dynamic camera position. They create several radiance environ-

ment maps–one per camera–and use Image Based Rendering (IBR) to interpolate

between the available reflection maps for new camera locations and orientations.

The problem with many of these techniques is that they require an expensive

prefiltering step where the environment map must be convolved with each BRDF

or material in the scene. This preprocessing can get even more expensive when

dealing with real world scenes that can contain many materials. The prefiltering

step also assumes full visibility, thus objects do not cast any shadows in the scene.

Kautz and McCool [KM00] demonstrated that it was possible to render glossy

reflections with nearly arbitrary isotropic BRDFs at interactive rates. They rep-

resented their BRDF’s as single or multiple lobes and used greedy local fitting

14

techniques to efficiently compute the lighting equation. Their system is limited in

that it only supports BRDFs with radially symmetric lobes.

Kautz et al. [KVHS00] used a faster hierarchical method for generating radiance

environment maps. They also showed how to use hardware acceleration to speed

up the process to interactive rates. Furthermore, they extended their method to

anisotropic BRDFs.

Ramamoorthi and Hanrahan [RH01] [RH02] introduce a new representation

called the Spherical Harmonic Reflection Map (SHRM) which results in signifi-

cantly faster preprocessing and rendering.

All these techniques, however, suffer from the problem of ignoring visibility

completely. Shadows and reflections between objects are not handled, leading to

limited applications for these algorithms. For example, they are not appropriate

for architectural scenes or scenes with complex visibility and materials.

Sloan et al. [SKS02] introduce a prefiltering method that takes visibility into

account. Their method captures effects like shadows, reflections, and caustics.

They also allow for soft shadows and caustics from rigidly moving objects to be

cast onto arbitrary, dynamic receivers; however, their examples are limited to low

frequency lighting effects. Sharp shadows and other high frequency features are

not supported due to the use of only low order spherical harmonics. The main

drawback to this approach is the extremely high precomputation cost requiring a

detailed ray traced sampling of visibility.

Agarwal et al. [ARBJ03] take a different approach to environment map render-

ing. Their method called Structured Importance Sampling stratifies the environ-

ment map into a number of regions which are preintegrated into a set of directional

lights. Their metric for determining the sizes of the strata takes both the intensity

15

of the pixels and visibility coherence into account, though not the actual visibility

of the strata in scenes. The primary benefit of their metric is that it prevents small

bright regions from getting oversampled. Another major benefit of this approach

is that it does not require an expensive preprocessing step. The drawback is the

point lights do tend to cause banding in the shadows and it is not quite suitable

for scenes with many small shadow features. It is possible however to randomly

sample pixels in strata to achieve soft shadows, but this unfortunately introduces

significant Monte Carlo noise in all but the simplest of scenes.

2.5 Conclusion

In contrast to many of the above works, the research we present in this thesis does

take actual scene visibility into account. Furthermore, our algorithm is designed to

quickly render high quality anti-aliased still images of scenes containing arbitrary

geometric and lighting complexity. We also integrate [ARBJ03] for computing

direct illumination from environment maps but without introducing any bias or

perceptible noise in the shadow regions.

Chapter 3

Iterative Adaptive Sampling

The goal of this research is to create a high-quality software renderer that can

effectively render real-world architectural scenes with arbitrary lighting complexity.

We want to consider scenes that contain hundreds or even thousands of area lights,

scenes that contain direct illumination from environment maps, and scenes with

millions of geometric primitives.

In this chapter we will first discuss how our rendering algorithm is designed

to meet these challenges and then we will describe our implementation. The first

two sections (Sections 3.1 and 3.2) in this chapter provide necessary background

information relevant to understanding some of the design choices in our algorithm.

Section 3.3 is a high level overview of the algorithm. Section 3.4 discusses how

our algorithm scales to handle scenes with many lights. The final two sections

(Sections 3.5 and 3.6) provide the details about our implementation.

16

17

3.1 Characteristics of Architectural Scenes

One of our primary considerations in accelerating the rendering process is to con-

sider real world lighting conditions. We want our renderer to be able to handle

direct lighting from point lights, area lights, and environment maps. We do not

want to place any limitations on the number of lights in the scene or the type of

geometry in the scene.

When addressing the problem of direct illumination from many light sources,

it is useful to consider some previous approaches for different types of real world

scenes. One example for which solutions already exist is scenes with very high

occlusion, where only a very small subset of lights contribute for each viewpoint.

For example, in a large office building, the only lights that will contribute within

each room might be the lights in the room itself and nearby lights in the hallway.

These few lights can be found using either sparse sampling of the current view-

point [WBS03] or through creating a set of cells (e.g. rooms) and portals (e.g.

doors) [ARJ90], [TS91], and [LG95]. This will not be the case if the building has a

large open lobby with a thousand lights. In many cases such as the lobby, occlusion

is not so extreme; thus, we want to design an algorithm that can deal with a wider

range of lighting characteristics.

In scenes with more open spaces or large architectural rooms, we find a different

pattern of visibility of light sources. We have tested several scenes and found that

typically only about 4-35% of the lights are visible from any particular point in the

environment. This implies that when calculating the luminance for a particular

surface point, it would be inefficient to consider all of the light sources. However,

over an entire image nearly all the lights contribute significantly on some surface

visible in the current view. Approaches based on high occlusion will perform poorly

18

on such scenes. The scene in Figure 3.1 an example of this kind of behavior. We

present more detailed visibility statistics on several scenes in the results section of

this thesis.

The rendering algorithm we present in this thesis provides good speedups for

almost any architectural scene and can handle environments with very high global

lighting complexity while still taking advantage of lower local lighting complexity

whenever possible.

Figure 3.1: On the left is a rendering of Grand Central Terminal. This model

contains over 800 light sources with nearly all of them contributing to the illumi-

nation of some surface visible in this viewpoint. On average, however, less than

35% are visible at any particular point. On the right is a false-color visualization

showing the number of lights visible from the surface points intersected by the view

rays through each pixel.

19

3.2 Monte-Carlo Integration

For many complex lighting situations, including area lights, one solution is to

evaluate the direct lighting equation (Equation 2.1) using Monte-Carlo integration.

Monte-Carlo integration is a powerful technique that allows one to evaluate an

integral of arbitrary complexity using statistical sampling. The weakness of Monte-

Carlo integration is that it may take an unreasonably large number of samples and

thus a large amount of computation time, to arrive at a correct final result.

To evaluate direct illumination at a point ~x using Monte-Carlo integration we

generate N sample points {~y1, ~y2, ...~yN}1 on the lights according to a probability

density function (PDF) p() to get:

L(~x) ≈ 1

N

N∑
i=1

V (~x, ~yi) fr(~x, ~yi) Le(~x, ~yi) G(~x, ~yi)

p(~yi)
(3.1)

The amount of noise or error in this estimator and hence the number of samples

needed to produce a sufficiently good estimate is strongly dependent on the prob-

ability density function p(). To determine the amount of error we use a variance

metric. Variance is a measure of the average difference between a set of data points

and their expected value. For direct illumination, the expected value is L(~x), and

each data point is the result of evaluating the direct illumination equation for a

sample ~yi.

A poor choice for the PDF will require much more sampling than a PDF that

closely represents the function we are trying to estimate. Unfortunately, finding a

1The nomenclature for points and rays may cause some confusion. Point ~x is
found by tracing a ray from the camera through a pixel and into the scene. This
ray is also referred to as a primary visibility ray or an eye ray. The first surface
point this ray intersects is our point ~x. Point ~yi is a sample point on a light source
randomly selected according to our probability density function p(). The ray from
~x to ~y is called a shadow ray and is used to evaluate the visibility of ~y from ~x.

20

good PDF is extremely difficult in part because it depends on the visibility function

V (), which is both hard to predict and expensive to evaluate.

We choose Monte-Carlo integration as the base of our rendering algorithm

because of the flexibility it provides in terms of scene and lighting complexity.

Our goal is to design a renderer that has the advantages of Monte-Carlo, but that

converges to the right solution rapidly through the use of intelligently selected

probability functions.

3.2.1 Choosing probability functions

The ideal probability distribution function would be zero on non-visible light source

points ~yi and otherwise exactly proportional to the other terms in Equation 3.1.

In this case the terms inside the sum become simply a constant. If the probability

is zero, then we do not need to evaluate Equation 3.1, thus saving time. Un-

fortunately, computing the ideal probability function is only achievable and cost

effective in the simplest cases. Even when excluding visibility, exact bounds can

be difficult to compute a priori if the BRDF, geometry, or light’s directional dis-

tribution is complex. In practice, various approximations to the ideal probability

functions are used.

The simplest estimator samples all sources uniformly regardless of their actual

contribution. A more advanced estimator would assign probabilities in propor-

tion to at least some of the terms in Equation 3.1. Sampling according to the

unoccluded irradiance of each light source is one frequently used option.

The irradiance due to a light source at a point ~x is defined as the emitted

radiance times the projected solid angle of the visible portion of a light source

when viewed from ~x. The mathematical difference between irradiance and exitant

21

Figure 3.2: Le is the emitted radiance of the light source and ΩT is its projected

solid angle when viewed from ~x. a) The irradiance is the radiant energy leaving the

light source and arriving at point ~x. Assuming the emitted radiance is constant over

the light source, the irradiance is simply the emitted radiance times the projected

solid angle. More generally, it is an integral expression over the domain of ΩT .

b) The exitant radiance is the luminance of point ~x when viewed by an observer

from a specific direction. Assuming the BRDF, fr is constant over ΩT , exitant

radiance is the irradiance arriving at point ~x times the BRDF. Otherwise, exitant

radiance is also an integral expression over ΩT as in Equation 2.1.

radiance (Equation 2.1) is that irradiance does not include the BRDF fr().

Unoccluded irradiance also factors out the visibility term V (). In practice this

difference is very minor in most situations and thus setting p() proportional to

unoccluded irradiance serves as a good approximation to the ideal PDF, unless

the brightest lights contributing at point ~x are occluded. In this case, it is actually

a very poor estimate as is shown in Figure 3.3.

The farther the actual probability is from the ideal probability, the more vari-

ance there will be in the estimator, and the longer it will take for the results to

converge. On the contrary, if the PDF closely resembles the function, it will have

22

a low variance associated with it, which is also demonstrated in Figure 3.3. In this

case, the average value of all the samples (i.e. sample mean) will quickly converge

to the expected value. The algorithm we present in this thesis is designed to itera-

tively find an increasingly better PDF for each point we render. The next section

provides an overview of our algorithm and how it proceeds to find such PDFs in a

fast and efficient manner.

3.3 Rendering with Multiple Passes

3.3.1 Design Goals

Our goal is to start with a simple approximation to the ideal probability func-

tion and then adaptively optimize the function while rendering. We achieve this

through performing multiple rendering passes. We use the result of evaluating

Equation 3.1 from previous passes as feedback to generate the improved PDFs

for the subsequent pass. This process will adapt the probability function based

on the local lighting configuration without requiring precomputation or detailed

knowledge about the scene. Conditions such as occluded lights are automatically

detected statistically and progressively exploited as their reliability increases. Dur-

ing early phases, feedback data is aggregated over larger image regions to generate

statistically meaningful information. As more data becomes available, the adap-

tation shifts toward smaller image regions. Our stopping criteria is based on the

variance of the samples computed. Once the sample variance for a pixel falls below

a threshold, we can stop rendering that pixel.

23

Figure 3.3: A scene demonstrating the efficiency of three different PDFs. The

brightest light is blocked at the point where we construct the PDF. a) The contri-

bution to the exitant radiance is shown for each of the four light sources. b) A

uniform PDF yields a high variance. c) The PDF based on the unoccluded irra-

diance does a poor job representing the actual contribution from the light sources.

d) The near ideal PDF yields a low variance.

24

3.3.2 Algorithm Overview

Our algorithm starts by dividing the image into 8 × 8 pixel blocks for processing

where each block is computed independently through multiple rendering passes.

The block structure allows us to aggregate sampling information across several

pixels while keeping our data structures small and permitting easy parallel pro-

cessing. For every point we render, we begin with a very simple PDF. We modify

each PDF between rendering passes as we collect light visibility and contribution

information through statistical sampling. We continue to perform rendering passes

on the image block until each pixel in the block has reached our target quality set-

ting. Figure 3.4 provides a simplified overview of our algorithm as a flow diagram.

We numbered the steps in the flow diagram and refer to them when explaining

parts of the algorithm.

Each block is first converted to a set of points in world space where we need

to compute the direct illumination [Step 1]. In the simplest case, this just means

shooting one viewing ray through each pixel to see what surface it hits. If an anti-

aliased image is desired then multiple points are generated per pixel as discussed in

Section 3.6. A block contains multiple pixels and each pixel contains one or more

points. We will use this hierarchy of scales when aggregating statistical lighting

information. A block is then computed using a variable number of passes as follows.

For each point in every pass we construct a probability function over the set of

lights [Step 2a] and sample it some predetermined number of times [Step 2b].

This produces a set of samples on the lights which can be evaluated according to

Equation 3.1. This includes shooting a shadow ray to the light sample to check

visibility [Step 2c]. We also store the result of the sample evaluations [Step 2d]

so that we may use them during our feedback stage [Step FB] at the end of

25

Figure 3.4: Overview of multipass algorithm. We refer to the numbered steps in

this diagram throughout the thesis.

26

the current pass. The first pass uses simple probability functions that do not use

any feedback information. Subsequent passes use probability functions that blend

this simple probability function with probability functions constructed based on

the results of prior samples averaged over the block and pixel. Regardless of the

sampling data, we never assign a zero probability to any light source. Assigning a

zero probability for a light that actually does contribute would introduce bias into

our PDF. To ensure that our PDF remains unbiased all lights maintain at least a

small base probability.

Next we compute an estimate for the shading value and variance of each

pixel by combining the results from all of the sample points associated with the

pixel [Step 3a]. These results are combined with the results of any prior passes as

described in Section 3.5.3. If the combined variance for the pixel is less than our

target variance threshold, then we assume that the sample mean for the pixel has

converged to be indistinguishable from the expected value [Step 3b]. In this case,

we stop further processing of this pixel, otherwise we will compute more samples

for the points associated with this pixel in the next pass. At the end of a pass we

check to see if there are any remaining points/pixels in the block that have not

satisfied the threshold criteria [Step 4]. If any pixels need further processing, we

use the sampling results from this pass to update the pixel and block statistics

that we use to compute our probability functions. This allows us to improve our

sampling probabilities in subsequent passes. Once all pixels have converged, we

clear all the pixel and block data structures and start processing the next image

block until the image is finished [Step 5].

27

3.3.3 PDF Construction and Refinement

We render image blocks with multiple passes so that we can adapt our PDFs in

between passes. The sample data, which is stored at the pixel and image block

level acts as feedback [Step FB] for refining our PDF. To construct the PDF

over the lights for a point during a particular pass j, we combine three different

component PDFs: a uniform PDF pU(`) and two feedback PDFs: pP (`), which is

based on pixel sample data and pB(`) which is based on block sample data. These

functions are defined in detail in Section 3.5.4 and by Equation 3.8. These are

combined together using the weights shown in Figure 3.5 to get an overall PDF:

pj(`) = cU
j pU(`) + cB

j pB
j (`) + cP

j pP
j (`) (3.2)

The exact values of these weights is less important than maintaining a few

important properties. The weights must sum to one. The initial pass can only

use the uniform PDF because no feedback is yet available. Afterward, early passes

should weight block PDF, pB most heavily because it is averaged over the most

data and converges faster. As more data becomes available, the more localized

pixel PDF, pP becomes more reliable and should be given larger weights, since it

is able to locally adapt more precisely.

We also considered adding a point-based PDF that contained sample data

only for its own intersection point. After some testing, we determined that this

additional component PDF did not improve image quality nor improve rendering

speed. In many cases the inclusion of a point PDF increased noise in the rendering

due to the low availability of sample data at such a small scale. The overhead of

working with an additional component PDF also increased rendering times.

28

Figure 3.5: The weights used to combine PDFs. cP
j , cB

j , cU
j refer to the weight

assigned to the pixel, block, and uniform PDF for pass j, respectively. Initially, we

use just the uniform PDF. In later passes, we weight the block PDF and then the

pixel PDF more heavily. Toward the end, we use the pixel PDF almost exclusively.

3.4 Clustering

One of the advantages of rendering images on a block basis is that it is an excellent

way to aggregate sample data on light sources. If a scene contains many lights,

it can still be very expensive to generate sufficient sample data for all the light

sources. If we have NL light sources in a scene, we need O(NL) samples in order to

be able to build an accurate PDF. Although trying to generate a PDF from very

sparse sampling data is possible, it is problematic because our algorithm would

interpret the lack of data from unsampled lights as evidence they were occluded.

Ideally we want to subsample the lights as well as assign appropriate probabil-

ities to unsampled light sources. We do this by aggregating sample data on light

sources in the form of light clusters. Again, we wish to take advantage of coher-

29

ence. In an image block, neighboring pixels may have similar luminance because

the intersected surfaces most likely have the same BRDF, they see the same light

sources, or they are the same distance away from light sources. Clusters are a form

of spatial coherence. Lights near each other can be clustered due to their similar

visibility, directionality, or distance from the point they illuminate. Figure 3.6

shows an example of how we might want to cluster light sources in a simple scene.

Figure 3.6: We dynamically compute an appropriate clustering based on position.

For the point on the table, all four lights are likely to make a good cluster because

their bounding sphere subtends a small solid angle. For the point on the chair we

may want to subdivide our cluster into two smaller clusters.

If we sparsely sample only a few lights in the cluster, we can estimate the

contribution of the cluster as a whole. We can then make a prediction about the

contribution of individual light sources based on the contribution of their parent

30

cluster. In his thesis, Sebastian Fernandez [Fer04] also uses sparsely-sampled hier-

archical light clusters to estimate the contribution of many lights. For each cluster

he defines a representative light source to serve as the estimate for the contribu-

tion of the entire cluster. In our system, we sample all the lights within a cluster

according to their emitted radiance, Le, as referenced in Equation 2.1. The next

section explains why this is a good estimate.

3.4.1 Ideal Cluster Properties

Recall from Equation 2.1 that the exitant radiance due to a light source is a result

of a product of the BRDF fr(), emission Le(), visibility V (), and geometric term.

Consider the point on the table in Figure 3.6 illuminated by the four light sources

in the scene. When evaluating each light in the four-light cluster, the BRDF and

geometric term are likely to have minimal variation. This is related to the fact

that the cluster’s bounding sphere subtends a small solid angle.

The emission can vary greatly (e.g. one light can be much brighter than the

others), but because we know this in advance we can include this into our PDF.

If we sample light sources within a cluster according to their intensity, it will not

be a source of variation or error.

As we mentioned previously, visibility is very difficult to predict and any vari-

ation in visibility across a cluster can invalidate our assumption that the contribu-

tion from all sample points ~yi within a cluster is roughly constant. This can reduce

the effectiveness of our PDF; however, [ARBJ03] shows that visibility is likely to

be very coherent across a small solid angle. Because of this simple fact, we can

usually sample just a few light sources within a cluster and get a very good esti-

mate of visibility for the entire cluster. Furthermore, in the following chapter we

31

show extensions that show how to optimally sample clusters with varying degrees

of partial visibility.

3.4.2 Hierarchical Light Clusters

Since the suitability of a cluster depends on its subtended solid angle from the

point being rendered, our clustering scheme needs to be locally adaptive. No

single partitioning of the lights into clusters is likely to work well over the entire

image, but dynamically finding a new cluster partitioning for each surface point

could easily prove prohibitively expensive. To solve this problem we use a global

cluster hierarchy2 to rapidly compute locally adaptive cluster partitions.

A cluster hierarchy is a tree where the leaves are the individual lights and the

interior nodes are light clusters that contain exactly the lights below them in the

tree. We define a cut through the tree as a set of nodes such that every path from

the root of the tree to a leaf will contain exactly one node from the cut. Each tree

cut thus corresponds to a valid partitioning of the lights into clusters.

We use a greedy algorithm to build our cluster hierarchy. We start by con-

verting each light source into a cluster that contains just the light itself. We then

use a bottom up binary tree building approach where we progressively pair clus-

ters together starting with the pair that has the smallest bounding sphere. For

efficiency, we can also define a maximum cluster size based on the dimension of

the scene. In addition we want to prevent dissimilar lights from being clustered

together. The emitted radiance of a cluster that contains both omni-directional

lights and oriented lights will vary greatly with different viewing angles. For this

2This is part of work done in collaboration with Dr. Bruce Walter, Prof Kavita
Bala, Dr. Sebastian Fernandez, and Prof. Donald P. Greenberg

32

reason, omni-directional lights have their own hierarchy and oriented lights are

only clustered with other oriented lights if they have a similar orientation. Envi-

ronment maps are also handled explicitly in a separate data structure. In the end

we have a “forest” of binary light cluster trees: one for environment maps, one tree

for omni-directional lights, and six trees for oriented lights–one corresponding for

each of the six cardinal directions in world space (i.e. X+, X-, Y+, Y-, Z+, Z-).

For static environments, we compute the cluster hierarchy only once per scene.

Then when shading each point, we can quickly and dynamically compute a cut,

or appropriate clustering of lights that is specific to that point by traversing the

hierarchies.

3.5 Implementation

In this section we discuss the implementation details of all the steps outlined in

the flow diagram (Figure 3.4).

3.5.1 Preprocessing a block

Before we begin rendering our pixels, we need to compute the appropriate set of

points and to compute a cut through the cluster hierarchies for each point [Step 1].

This is done for every pixel in the block. We only compute this information once

and then reuse it for every rendering pass on that block.

This initial stage begins with computing the set of points that we want to

sample during the rendering passes. For each pixel p in the current block B, we

calculate one or more intersection points of the eye rays with the scene geometry.

We cache this set of points called Xp for each pixel since we will reuse the same

33

set of intersection points for each pass. In Section 3.6 we discuss a novel approach

toward pixel anti-aliasing that is particularly well suited for this algorithm.

For each element of Xp we also compute our light cluster cut. We start at the

root node of each cluster hierarchy tree and progressively subdivide clusters that

are larger than a pre-specified solid angle. We add the largest clusters that are

below the solid angle threshold to the cluster cut. As explained in Section 3.4.1,

using a solid angle metric takes advantage of coherence in visibility across a small

region in space. The clustering also has some benefits when it comes to sampling

a point, which we discuss in Section 3.5.2. Refer to Figure 3.7 for a graphical

representation of this step.

For each cluster we encounter while traversing down the tree, we also perform

some simple geometric tests to determine if it can be immediately disregarded

because it will not contribute any irradiance at our intersection point. These tests

include pruning out clusters on the opposite side of the surface normal or clusters

with oriented lights that all face away from our intersection point. Because the size

of the cut typically varies logarithmically with the number of lights in the scene,

the expense of these tests is minimal even in scenes with hundreds or thousands

of lights.

For environment maps, we do not have a hierarchical structure; each region in

the map will always subtend the same solid angle regardless of the point in the

scene. As a result, we just add each environment region to the cut unless the entire

region is on the opposite side of point’s surface normal.

Performing these geometric tests on the clusters is effective and worthwhile

because it allows us to quickly prune out any clusters that will provably not con-

tribute. As we mentioned in Section 3.3.2, it is important that our PDF be un-

34

Figure 3.7: A graphical representation of [Step 1] of the multipass algorithm

showing how we a) compute the surface intersection points for each pixel and b)

the cuts through the cluster hierarchies for each point.

biased. Setting a zero probability to a non-contributing light does not introduce

any bias, but it does help our PDF converge to the ideal more rapidly. It will

also prevent any wasted effort going toward setting up and tracing shadow rays to

lights that we know cannot contribute.

3.5.2 Sampling at a point

For each point x ∈ Xp we want to define a PDF [Step 2a] over the light sources

specific to that point and then proceed to sample that PDF [Step 2b] and trace

35

shadow rays [Step 2c]. The initial pass is different from all subsequent passes

because we start without any sample data. The primary purpose of the first pass

is therefore not to estimate the value of the pixel, but rather to “seed” our sample

data [Step 2d]. We do this by constructing an initial PDF that equally weights all

clusters in the cut. Sampling uniformly over light clusters is superior to sampling

uniformly over all light sources because it allows us to radially stratify our samples

in a hemispherical space centered at ~x. This sampling is roughly equivalent to

sampling inversely-proportional to the distance-squared, except that it allows us

to stratify our samples to ensure that each cluster receives a sample. In effect, this

places a greater density of samples close to the intersection point and allows us to

capture small visibility features. Given an equal budget of samples between the

two sampling techniques, uniform sampling over the light sources would oversample

distant groups of light sources and undersample nearby light sources. Uniformly

sampling the clusters is also consistent with how we construct the PDFs for sub-

sequent passes. Because our algorithm constructs PDFs by assigning probabilities

to clusters, it is important that each cluster have a good distribution of samples.

When constructing our first sample-driven PDF, it is better for all clusters to have

some samples than for some clusters to have many samples and some clusters to

have few or no samples.

For all other passes we compute PDFs that depend on sample data collected in

previous passes. The feedback step [Step FB] accumulates and averages sample

data collected during the last pass at [Step 2d] and combines it with sample data

collected during all the previous passes. The PDF for a point is a blending of three

different functions, two of which are based on sample data. Section 3.5.4 describes

in detail how we store and use our sample data to generate these functions.

36

3.5.3 Computing the pixel estimate

In each pass j, and for each pixel p, we compute a pixel estimate [Step 3a], Ip,j, of

the exitant radiance using Equation 3.1 and an associated error estimate [Step 3b]

that is used as a termination criterion. We want to use all previous pixel estimates

to increase the accuracy of our combined estimate. We now describe how to com-

pute these estimates across multiple passes.

The error estimate for pixel p in pass j is computed as the sample variance,

s2
p,j, of all the light samples for that particular pixel. We must be careful to use an

unbiased estimator of sample variance. The exact estimator used is described in the

appendix. The sample variance is computed numerically using the stored sample

data. We can then compute an overall pixel estimate and sample variance that is

weighted over all passes in a way that minimizes total variance [DBB03]. Given

the current pass’s sample variance s2
p,j as well as the sample variance computed

from the previous passes s2
p,0 · · · s2

p,j−1 the overall sample variance for the pixel, s2
p,

is then computed using equation 3.3:

s2
p =

(
j∑

i=0

1

s2
p,i

)−1

(3.3)

Similarly, let Ip be the estimated value of pixel p that combines pixel intensities

from passes 0..j as given by equation 3.4 below:

Ip =

(
j∑

i=0

Ip,i

s2
p,i

)
∗ s2

p (3.4)

Termination criterion: For termination, we test s2
p/I

2
p > t, where t is the thresh-

old we use as a termination criterion [Step 4]. If this inequality is satisfied, then

we mark that pixel as completed and compute its final value Ip. Note that this

inequality normalizes for pixel intensity. In subsequent passes, we only continue

37

working on pixels in the block that have not yet converged. If after any pass,

we find that all the pixels in a block have a sample variance s2
p that is below our

threshold variance, we can stop rendering that block and move on to the next

one [Step 5].

3.5.4 Storing statistics and constructing PDFs

We keep statistics about the results of prior lighting samples in order to evolve

and improve our sampling PDFs. This allows our PDFs to automatically adapt

to handle conditions such as occluded clusters. Since we sample clusters with a

high contribution with greater probability, our algorithm is also able to efficiently

capture glossy highlights.

To accomplish this task we keep track of the average contribution and visibility

of each light averaged over the block and each pixel in the block. Figure 3.8

explains the need for multiple levels of granularity in the storage of sample data

and the resulting need for a blending of multiple PDFs. Rather than store the

result of every single sample evaluation, we only keep track of running sums of

exitant radiances for each of the light sources as well as a counter on the total

number of samples and the number of visible (unoccluded) samples. We also

propagate the sample information from the individual light sources up the cluster

hierarchies. This way, if two points have different cluster cuts they can still share

sample information to some extent.

As mentioned in Section 3.5.2, we assign probabilities to clusters instead of

individual light sources. This reduces the overhead involved in building a PDF,

which can be a significant performance gain in scenes with many lights since the

size of the cut is significantly less than the number of lights in the scene (Table 4.5).

38

We sample light sources within a cluster proportionally to the emitted radiance

of each light in the cluster. Standard sampling techniques can be used to pick

the point within a light once it is chosen, such as uniform area sampling or the

techniques of [SWZ96]. We use uniform area sampling for all planar light sources

and uniformly directional space sampling for spherical lights.

In order to construct PDFs from sample data, we need an effective method of

organizing and accessing the sample data. Because an optimal PDF is proportional

to the actual function it is trying to estimate, our sample data must keep track

of the average contribution of light clusters. In addition we want to measure the

average behavior of clusters at different image space granularities–namely at the

block and pixel level.

We can express the process of storing statistics as follows. For any block, let

R be a set consisting of pairs of points {~xi, ~yi} that define light evaluations (i.e.

~yi is a point on the light source and ~xi is a point being illuminated) which were

evaluated using Equation 3.1. Let R` be the sample mean for all evaluations that

sampled light `. Remember that in our hierarchical light clustering, ` can be either

a light or a cluster of lights. Let RA
` be the set of all light evaluations for light `

from points ~xi ∈ A. Figure 3.9 uses color coding on a simple scene to visualize the

set A for a block or pixel. Finally, let RA
`,j be the set of all light evaluations using

Equation 3.1 from points in the set A to points on light ` up through pass j.

Let L(~xi, ~yi) be the result of the light evaluation which is the same as evaluating

Equation 3.1 using just one sample.

L(~x, ~yi) =
V (~x, ~yi) fr(~x, ~yi) Le(~x, ~yi) G(~x, ~yi)

p(~yi)
(3.5)

The estimated contribution of a light ` over a set A for samples through pass j

39

Figure 3.8: The figure on the left is a rendering of Grand Central Terminal.

On the right we show a closeup of an 8 × 8 pixel block. The white area at the

top is a light that is visible through the 8 × 8 pixel block. This light has a very

high contribution for the pixels at the top of the block and little to no contribution

for the pixels at the bottom. Averaged over the entire block the exitant radiance

of the light is about an order of magnitude greater than all the other contributing

lights combined. Sampling according to just the block PDF would produce very good

results for the top pixels and very noisy results for the bottom pixels. We need a

finer measure of granularity in our PDF construction to be able to capture the

sharp differences in lighting that can occur across the pixels in a block. For this

reason our algorithm creates a final PDF at a point from a linear combination of

a uniform PDF as well as other PDFs generated from block- and pixel-based data.

40

can be written as:

CA
`,j =

1∣∣RA
`,j

∣∣ ∑
{~xi,~yi}∈RA

`,j

L(~xi, ~yi) (3.6)

Naively, we may want to assign probabilities to clusters proportionally to the

contribution C, but it turns out that this is ideal only when considering point

lights. Area lights and clusters are not point entities and may have a continuous

distribution and partial visibility, but algorithm assigns probabilities in a very

discretized way.

Our intuition is that we need to consider partial visibility as well as radiance

contribution when assigning probabilities. To find the optimum probability, we

minimize for variance which we define in terms of contribution and occlusion per-

centage. Let u be the visible fraction of a light when viewed from the point we are

trying to render. The variance minimizing probability is thus proportional to C√
u
.

We provide a proof of this result in the appendix.

Another benefit of the
√

u term is that it changes the relative weighting of light

sources in a helpful way. Lights with partial visibility are given more samples than

they would get without including this term. Given the positive feedback nature

of this algorithm it is very possible that the PDF may undersample some of the

highly occluded but still important lights. The
√

u term reduces this tendency.

To be consistent with our algorithm let uA
`,j be a fraction where the numerator

is the number visible light evaluations and the denominator is the total number

light evaluations sent from all surface points in the set A to all sample points on

light ` up through pass j. Thus the probabilities should be proportional to:

41

FA
`,j =

CA
`,j√
uA

`,j

(3.7)

A PDF for pass j can be constructed from the samples from all prior passes as:

pA
j (`) =

FA
`,j−1∑

l∈S FA
l,j−1

(3.8)

where S is the set of all clusters in the current cut.

We use this equation to compute the pixel and block PDFs for a pass by

evaluating this equation with the set A replaced by the points associated with a

pixel or block respectively. Remember that we do not actually need to keep all

the individual light sample results; instead, we can just keep track of the running

sums in Equation 3.6 for the block and each pixel in it.

We are able to further improve our performance by breaking the pixel and block

statistics into different sets based on the surface normal of the point being shaded.

We divide the normals into six sets using a cube decomposition of direction space

aligned with the world space axes (i.e. X+,X-,Y+,Y-,Z+,Z-). We do this to prevent

dissimilar samples from being averaged together. We then split the pixel and block

statistics correspondingly and only use data from points with the same normal

classification when computing the pixel and block PDFs for a point. Figure 3.9

shows how points on different surfaces can have their sampling statistics combined

if their surface normals are similar.

42

Figure 3.9: The image on the left is a rendering of a simple scene while the color

coded image on the right represents what we might see through an 8×8 pixel block.

Since we only combine sample data for surfaces with similar normals, the color

coding (Cyan, Magenta, and Yellow) shows how we would separate our sampling

statistics for this particular image block. When generating a block PDF for a point

on a magenta region, we use all sample data from all magenta regions. When

generating a pixel PDF for a point on a magenta region, we use all sample data

from all magenta regions within just that pixel. We combine sample data even if

they lie on separate planes such as the top of the box and the floor the box is resting

on.

43

3.6 Adaptive Anti-Aliasing

To anti-alias our image we use the standard technique of supersampling the pixels

by generating multiple eye ray intersections per pixel. The degree of aliasing varies

inversely with the number of samples (intersections) used to estimate the pixel,

therefore we want to have as many intersections as possible.

3.6.1 Requirements

Many adaptive anti-aliasing algorithms for Monte-Carlo ray tracing use a technique

known as adaptive progressive refinement [PS89]. Typically, adaptive progressive

refinement traces and shades eye rays to the pixel until all pixel samples reach some

variance threshold. Since the multipass rendering approach in this thesis assumes

that we know all intersection points within a pixel before we start rendering it, we

cannot just simply create more intersections per pixel as we need them. Our other

requirement is keeping the number of intersections per pixel low because a large

number would add significant overhead to PDF construction for each pass. We

would like to find a small set of representative points per pixel that still accurately

represents the discontinuities present in the pixel. Our first priority should be to

handle the geometric boundaries rather than shadow boundaries since the former

tend to be more visually apparent. Also, since area lights create soft shadows,

shadow anti-aliasing is less of an issue.

3.6.2 Approach

The simplest way to meet our first requirement is to trace a predetermined number

of eye rays and record their intersections. A more intelligent method would use an

44

adaptive stopping criterion that is based on some estimate of either the complexity

or variation of the intersection points within a pixel. Both of these approaches

however would prevent us from meeting our second requirement of keeping the

number of intersection points low.

Our solution is to group similar intersection points together and create non-

uniform sized sub-pixel regions. Each region will have a representative intersection

point near the center and an estimate of its sub-pixel area. The best way to

visualize these regions is to imagine them as being small planar surfaces in space

of constant color. This allows us to get the anti-aliasing benefits of tracing multiple

eye rays while only having to shade a small subset of those points. Since we expect

geometric discontinuities to be the major source of aliasing, our metric groups

intersection points based on similar geometric features.

Finally we need to place a limit on the size of these regions. We set our

region size limit to one-quarter of the pixel radius. In pixels with no geometric

discontinuities this will generate a minimum of four regions per pixel and should

be sufficient for almost all shadow anti-aliasing needs. The number of regions per

pixel increases with the geometric complexity within the pixel. We use the ray

differential [Ige99] as a convenient means to determine how close two intersection

points (which are in world space) are in image space.

3.6.3 Implementation

Now that we have an approach that meets our requirements, we will explain how

we construct these regions, how we choose the representative point, and how we

determine the sub-pixel area of these regions. The representative point will con-

tain a record of material at the point and its surface normal. The selected point

45

determines the cut in the global light cluster hierarchy and the construction of our

PDF.

To find these regions, we start by firing an initial set of twenty rays from

the eye through each pixel. We want to bundle similar intersections with similar

characteristics into regions. Each intersection from a traced ray can either form

it’s own region or it can join another existing region. If a new region is formed,

the first intersection point becomes the representative point for that region. The

criteria for a ray joining a region are that its intersection point must:

(a) lie in the same plane as an existing region and have the same material

(BRDF)

(b) be within the region’s radial extent.

After shooting this initial set of rays we need to decide if we should send more

rays or if our initial set is sufficient to characterize the entire pixel. If all the rays

hit the same surface then the initial set is probably sufficient. We can keep track

of the number of unique surfaces by checking when the new intersection point fails

the grouping test. If it fails at the first condition then we know we hit a unique

surface. Our metric for determining how many eye rays to send is the number of

unique surfaces in a pixel. We maintain a ratio of twenty pixel samples per unique

surface up to a maximum of sixty samples for three unique surfaces.

After we have evaluated all our eye rays and created the regions for a pixel, we

only need to determine what ratio of eye rays hit that region with respect to all

the pixels for the region. One can think of this ratio as the area of the sub-pixel

region with respect to the area of the pixel. To minimize the variance of the pixel,

we want to minimize the variance × area of sub pixel regions. We know that

46

Figure 3.10: In this figure we will show the process we use to subdivide a pixel

into regions and the representative points that we use for pixel anti-aliasing. a)

An 8× 8 pixel block from figure 3.9. b) Closeup of pixel (3,0) after firing the first

three eye ray intersections. All rays hit a unique surface. c) The fourth ray (blue)

hits a non-unique surface but it is too far away to be grouped with the previous ray

(green) that hit the same surface so it forms a new region. d) The fifth ray (yellow)

hits a non-unique surface and is sufficiently close to one of the pre-existing regions.

e) Pixel after firing a total of 32 rays and grouping them according to our criteria.

f) A false-color visualization show what the regions for this pixel look like. The

X’s in each region symbolize the first eye-ray intersection that created the region.

Any additional rays fired would be grouped in one of these existing regions. The

sub-pixel area of these regions is estimated by the number of rays that hit the region.

47

variance varies inversely with the number of samples and thus to minimize overall

pixel variance during rendering, we split our budget of shadow rays for a pixel

proportionally to the area of the region.

Chapter 4

Results

In this chapter we will provide results for our direct illumination algorithm (Iter-

ative Adaptive Sampling) and compare it to a reference solution in terms of both

speed and quality. Recall our primary observation. While a scene with complex

lighting may have many lights visible in a single image, at any particular surface

intersection point only a few lights may actually be visible and contributing to

the total irradiance at the surface. Our algorithm achieves nearly an order of

magnitude speed increase because we exploit this finding in a variety of ways.

Our algorithm is based upon the concept of sampling light sources in proportion

to their actual contribution of a pixel’s exitant radiance. We do this by iteratively

modifying a probability density function (PDF) until it captures the local lighting

configuration. We use sample data collected during rendering as feedback to drive

the modification of the PDF. Our algorithm takes advantage of coherence in image

space by aggregating sample data on both a per-pixel and per-block level as well

as coherence in world space by aggregating sample data on light clusters. Through

feedback and aggregation we are able to reduce the number of shadow rays we have

to evaluate in order to accurately determine the exitant radiance for a pixel. Since

48

49

shadow rays are typically the most expensive computation of a ray tracer, our

primary performance speed-up comes from this reduction. We are able to achieve

further performance enhancement though the efficient usage of hierarchical light

clusters and “cuts” through the tree hierarchy.

4.1 Test Setup

4.1.1 Algorithm Comparison

We compare our algorithm to a reference algorithm that samples according to the

unoccluded irradiance of a light source. In scenes that contain direct lighting from

an environment map, samples are split between the lights in the scene and the en-

vironment map proportionally to total unoccluded irradiance. Sampling within the

environment map is performed using Structured Importance Sampling [ARBJ03].

For both Iterative Adaptive Sampling and the reference solution we stratify the

environment map with 300 regions and use jittering and pre-integration.

We rendered our images at 1024× 1024 resolution with anti-aliasing on a dual-

processor 1.7 GHz Pentium 4 Xeon computer with 1024MB of memory.

4.1.2 Models

We tested our algorithm on three different models. One of which, the Kitchen,

has two different lighting scenarios, thus providing us with a total of four testing

environments. The Kitchen model is our simplest scene with 72 area lights and 338

thousand triangles. Kitchen 2 is identical to the Kitchen except that it also contains

lighting from an environment map. The windows are not visible in the viewpoint of

the kitchen which we rendered but they are directly behind the camera. The third

50

model, Ponderosa is geometrically simple with only 131 thousand triangles, but

it contains 138 point light sources as well as direct lighting from an environment

map. Our final model, Grand Central Terminal is a model of the Grand Concourse

Lobby of the famous train station in New York City. It is our most complex model

with over 1.5 million triangles and over 800 light sources, of which 219 are spherical

area light sources. We have summarized the basic statistics for the four models in

Table 4.1. Renderings of the four environments are shown in Figure 4.1 through

Figure 4.4.

Table 4.1: Model Statistics

Lights
Model Triangles Point Area Environment Map

Kitchen 338K 0 72 No
Kitchen 2 338K 0 72 Yes (300 Regions)
Ponderosa 131K 138 0 Yes (300 Regions)
Grand Central Terminal (GCT) 1527K 613 219 No

51

Figure 4.1: Kitchen Model

52

Figure 4.2: Kitchen with Environment Lighting

53

Figure 4.3: Ponderosa

54

Figure 4.4: Grand Central Terminal

55

4.2 Reference Solution Implementation Details

We want to compare our algorithm to an industry standard ray tracer in order

to have a fair and meaningful comparison. The reference algorithm we use for

the purposes of comparison is also a Monte-Carlo ray tracer except that it uses a

fixed PDF on the light sources that is proportional to their unoccluded irradiance.

We also tested a reference solution with a PDF that weights the lights sources

uniformly, but found that unoccluded irradiance outperforms it by nearly a factor

of two for all of our scenes.

To anti-alias the image for our reference algorithm we intersect each pixel a

minimum of twenty times. For each eye ray intersection we compute an appropriate

PDF which we then sample multiple times. The reference solution also uses an

adaptive stopping criterion that continues to intersect the pixel and sample a

new PDF until the relative sample variance of all of the light samples is below

a threshold. The identical stopping criteria allow us to perform an equal quality

comparison of our algorithm with the reference solution. Since the relative variance

stopping criterion for the reference solution also considers variance due to pixel

aliasing, we also achieve a form of adaptive anti-aliasing for each pixel. We also

perform equal time comparisons to show how well the reference solution would

perform if given an equal time budget as our algorithm.

One of the drawbacks of the reference algorithm is trying to find the right dis-

tribution of shadow rays versus eye rays per pixel. Since the cost to compute a

PDF based on unoccluded irradiance can be expensive for scenes with multiple

lights, it is important to sample a PDF multiple times per eye ray intersection for

best performance. For optimum performance we need to minimize the number of

primary intersections (and hence PDF calculations) while still maintaining suffi-

56

cient pixel anti-aliasing properties. If we do not meet the right balance, we may

oversample the lights for a pixel while undersampling the pixel’s geometry and

spending a disproportionate amount of time trying to define PDFs. Our multipass

algorithm does not suffer from this problem since we compute the degree of pixel

anti-aliasing before we begin rendering.

4.3 Resulting Images and Execution Timings

In this section we provide both qualitative and quantitative comparisons of our

algorithm with respect to the reference ray tracer described in Section 4.2.

4.3.1 Quantitative Comparison

We list the times needed to render a reference image, an image of equal quality

using our algorithm, and the speed-up of our algorithm over the reference solution

in Table 4.2.

Table 4.2: Same Quality Rendering Time Performance Results

Rendering Time
Model Reference (s) Iterative Adaptive (s) Speed-up

Kitchen 15,364 1,726 8.9x

Kitchen 2 68,392 8,368 8.2x

Ponderosa 53,328 5,604 9.5x

GCT 57,432 7,136 8.0x

By examining the average number of shadow rays per pixel in Table 4.3, we can

see immediately that the reduction in shadow rays is the dominant factor in the

computation acceleration. This reduction is primarily attributable to the adaptive

PDF based on unoccluded light sources. Further performance speed-ups beyond

57

Table 4.3: Same Quality Light Sample Count Performance Results

Average Shadow Rays Per Pixel
Model Reference (s) Iterative Adaptive (s) Reduction

Kitchen 1,870 278 6.7x

Kitchen 2 9,916 1,604 6.2x

Ponderosa 10,772 1,290 8.3x

GCT 6,048 1,012 6.0x

shadow ray reduction are achieved through the use of hierarchical clusters and

tree-cuts, as explained in Section 3.4.

4.3.2 Qualitative Comparison

For the Grand Central model we show a side-by-side equal time and equal quality

comparison in Figure 4.5. Due to the limited printing resolution, it is almost

impossible to notice any differences in the renderings. For this reason we provide

closeup shots of the images to bring attention to quality differences and similarities.

Notice that there is no perceptible difference in the equal quality comparison even

in the closeup of the soft shadow region. For the remaining scenes (Figures 4.6, 4.7,

and 4.8) we only show equal time image comparisons.

58

F
ig

u
re

4
.5

:
G

ra
n
d

C
en

tr
al

T
er

m
in

al
Q

u
al

it
at

iv
e

C
om

pa
ri

so
n
.

T
he

bo
tt
om

ro
w

co
n
ta

in
s

cl
os

eu
ps

sh
ow

in
g

ho
w

th
e

tw
o

al
go

ri
th

m
s

co
m

pa
re

w
he

n
re

n
de

ri
n
g

so
ft

sh
ad

ow
s

ca
u
se

d
by

m
an

y
li
gh

ts
an

d
m

an
y

oc
cl
u
de

rs

59

Figure 4.6: Kitchen Qualitative Comparison. The bottom row contains closeups

showing how algorithm is better able to capture glossy highlights.

60

Figure 4.7: Kitchen with Environment Lighting Qualitative Comparison. The

bottom row contains closeups showing the effectiveness of our algorithm when ren-

dering scenes with direct illumination from environment maps.

61

Figure 4.8: Ponderosa Qualitative Comparison. In this scene, on average 96% of

the lights are occluded for any point in this scene. The bottom row contains closeups

that show how our algorithm can effectively render scenes with environment maps

even when occlusion is very high.

62

4.4 Visualizations and Detailed Results

In this section, we provide additional images and statistics to better explain the

behavior of our algorithm. The explanatory figures reveal the effects of visibility

and occlusion, the benefits of using an adaptive PDF, and the efficiency of the

clustering and tree-cut routines.

4.4.1 Visibility and Occlusion

In Table 4.4 we provide details on the visibility of the light sources and environment

map regions in each of the scenes. Note that for all scenes, a large majority of the

lights and environment map regions contribute somewhere in the viewpoint. On

a per-pixel level, the visibility statistics are quite different. The Ponderosa model

has the largest disparity where 100% of the sources are visible at some intersection

point in the image and on average only 4% are visible from individual surface

points. Figure 4.9 is a false-color visualization of the combined per-pixel visibility

of light sources and environment map regions.

63

Figure 4.9: Average Light Source Visibility False Color Visualizations. Blue rep-

resents surfaces where a great majority of the lights are occluded while red represents

surfaces that have a greater number of contributing lights.

Table 4.4: Visibility Statistics

Light Emitter Visibility

Total Environment Per Viewpoint Per Pixel

Model Lights Map Regions Lights Regions Combined

Kitchen 72 0 62 (86.1%) N/A 11.5 (16.0%)

Kitchen 2 72 300 62 (86.1%) 197 (65.7%) 64.1 (17.2%)

Ponderosa 138 300 138 (100%) 300 (100%) 17.5 (4.0%)

GCT 832 0 822 (98.8%) N/A 279 (33.5%)

64

4.4.2 PDF Adaptation

Figure 4.10 shows how our PDF adapts to local lighting conditions at two different

surface intersection points–one point (x1) has more open visibility while the other

point (x2) is mostly in shadow. This environment has 832 lights, but it has been

reduced to 103 clusters for point x1 and 81 clusters for point x2. From this figure we

can see that the PDF for the first feedback-driven pass, where the block component

PDF is weighted heavily, varies greatly from the initial uniform PDF each point

starts with. With additional passes we are able to achieve more accurate PDFs

due to a combination of two reasons: 1) the greater availability of samples and 2)

the heavier weighting of the pixel component PDF that is able to better capture

local lighting configurations. Consequentially, we have a reduction in the number

of shadow rays cast.

After ten passes, the relative weights we assign for the uniform, block, and

pixel component PDFs no longer change (see Figure 3.5). We do however continue

evolving the probabilities within our component PDFs past that stage because

we still collect sample data. After fifteen passes, we determined that additional

sampling did not have much of an effect on final image quality for the scenes we

tested.

4.4.3 Clustering

As described in Section 3.4, clustering reduces the effective number of lights we

have to consider. The real issue is how large can we make the clusters to maximize

efficiency without sacrificing the benefits they provide us. In [ARBJ03], the authors

determine that 0.01 steradians is a conservative metric for the average visibility

feature size of most scenes. This means that a single sample on a light source

65

Figure 4.10: a) A rendering of Grand Central Terminal with two points high-

lighted. b-e) The adaptation of PDFs for the two points. We have omitted the

initial PDF (pass 0) for both passes since it is just uniform for all lights. Point x1

requires two additional passes, while point x2 requires six additional passes.

66

(or environment map region or cluster) that subtends less than 0.01 steradians

from a surface intersection point should reliably predict visibility. We use a more

aggressive value of 0.02 steradians because we will sample each cluster multiple

times. A higher cluster size maximum reduces the number of clusters in the cut

which effectively makes PDF construction more efficient. Setting the threshold

much larger than 0.02 steradians would significantly reduce spatial coherence across

a cluster.

Table 4.5 provides statistics on the average number of clusters per cut in each

of the four test environments. Remember that in our system we define a cluster

as either a group of lights in the scene or an environment map region.

Table 4.5: Clustering Statistics. The fourth column represents the average num-

ber of clusters per cut that are composed of grouped light sources, while the fifth

column represents the the number of clusters per cut that are environment map

regions. The two numbers combined represent the number of clusters per cut. The

percentage in column four refers to the number of clusters in the cut when com-

pared to the number of lights in the scene. In effect this shows the scalability of

our clustering with the number of lights.

Total Environment Average Number of Clusters Per Cut
Model Lights Map Regions Lights Map Regions

Kitchen 72 0 24.4 (33.9%) N/A
Kitchen 2 72 300 24.4 (33.9%) 175
Ponderosa 138 300 47.6 (34.5%) 164
GCT 832 0 81.0 (9.70%) N/A

67

4.5 Performance and Efficiency Analysis

Our algorithm performs better than the reference solution for two main reasons.

The primary performance benefit is a result of evaluating fewer shadow rays. This

is possible because of our adaptive PDFs, which yield low sample variance results.

The secondary benefit comes from lower overhead for PDF construction, which

is affected by several factors. The use of clustering can have a very noticeable

impact on PDF construction speed, especially in scenes with many lights such as

Grand Central Terminal where the number of clusters in each cut is on average

less than one-tenth the number of lights in the scene. Because we do not need to

consider every single light source individually, our algorithm is far more efficient

when defining a PDF over multiple light sources. Furthermore, due to our adaptive

anti-aliasing, we can significantly reduce the number of viewing rays we have to

trace. This in turn also reduces the number of PDFs we have to construct.

4.6 Implementation Details

In this section we list and discuss the various constants and settings we use in

our algorithm. These constants are not critical to the understanding the Iterative

Adaptive Sampling algorithm or its effectiveness, but they are necessary to someone

implementing this algorithm. We used these parameters for all of our renderings

and therefore believe them to be conservative and scene independent.

4.6.1 Shadow Rays Density per Pass

We sample the PDF a variable number of times per pass depending on the number

of clusters in the cut, NC . For all passes we sample the PDF 1.5 × NC times

68

per pixel appropriately distributed according to the sub pixel area associated with

each pixel’s intersection points. We choose 1.5 × NC as our metric because when

combined with stratified sampling, it places at least one sample per cluster in the

initial pass, assuming all surface intersection points share the same cut. While

1.0×NC may provide a similar guarantee, we choose a more conservative value of

1.5×NC because we know that all surface points within the pixel will not always

have the same cut. We also set a minimum of 50 samples per pixel per pass, and

a maximum of 150 samples per pixel per pass for all passes except the initial pass.

We do not set a maximum for the initial pass since it is important to have at least

one sample per cluster per pixel

As an optimization, at the end of a pass, we further sample a pixel with the

same PDF if its relative variance is very close to the threshold. Given the combined

sample variance of all previous passes and our threshold variance, we solve for the

sample variance we need for a pass to reach the threshold. If the sample variance for

the current pass is within a factor of two of the needed sample variance, we continue

sampling the current pixel with the current PDFs associated with the points in

increments of 25 shadow rays until we achieve the needed sample variance. This

eliminates some overhead in building PDFs and it also allows us to sample the

pixel in smaller increments when we are close to reaching convergence.

4.6.2 Avoiding Undersampling

While the main purpose of the uniform PDF is to ensure that we have a good

distribution of samples to start with, it also ensures that we have an unbiased

PDF. The problem arises when both the point and block PDFs assign a zero

probability to a light that has a noticeable contribution. The additional weight

69

added by the uniform PDF is typically not enough to accurately represent the

actual lighting and as a result we have noise in our PDF. If the block PDF fails to

capture a contributing light, then there is no way the pixel PDF can account for

this light since it only contains a subset of the block’s sampling data.

To ensure that clusters are not prematurely given a zero probability in the

block PDF, we make a special sample density requirement. If a cluster in a cut

has not received any samples on the block level, or if it has received less than

four samples, all of them being occluded, we set its probability to be equal to the

average probability of all the other clusters in the cut rather than zero.

4.6.3 Anti-Aliasing

Recall that in our anti-aliasing algorithm described in Section 3.6 we trace a large

number of primary visibility rays and group their surface intersection points to

form a smaller set of surface points. Our metric to determine how many rays to

trace is not only dependent on the number of unique surfaces we hit within a pixel,

but also image resolution. At a higher resolution, we will have less aliasing than at

a lower resolution, thus reducing our need for many primary rays. We use a ratio

of twenty-five rays per unique surface for resolutions of 512× 512, twenty rays per

unique surface for image resolutions of 1024 × 1024, and a ratio of of fifteen rays

per unique surface for resolutions above 1200× 1200.

For the scenes and image resolutions that we tested, on average our adaptive

anti-aliasing uses less than ten representative points per-pixel. This is a good result

considering we group a minimum of twenty intersections and as many as sixty. See

Table 4.6 for exact per-scene averages.

70

Table 4.6: Additional Per Pixel Statistics. Recall that our adaptive anti-aliasing

algorithm creates a set of “regions,” which are a one-to-one mapping of intersection

points that represent sub-pixel areas or regions.

Per Pixel Averages
Model Anti-Aliasing Regions Rendering Passes

Kitchen 10.1 2.7
Kitchen 2 10.1 4.5
Ponderosa 9.8 3.3
GCT 8.8 5.5

4.6.4 Termination Condition

Through Figures 4.9 and 4.11 we can see that the most difficult pixels to render are

those that have the greatest amount of occlusion. Though it may seem counter-

intuitive, rendering time increases as the number of contributing light sources

for each pixel decreases. The required number of light samples and shadow ray

evaluations necessary to reach convergence for a dark pixel can be unreasonably

large, especially if the pixel is near the black point1 of the image. This is because

our metric of relative sample variance is based on Weber’s Law, which states that

amount of error the human visual system can perceive in a pixel is proportional

to the base luminance of the pixel. The error tolerance is far too conservative for

very dark pixels because the limiting factor is actually our display device at those

low luminances.

To prevent unnecessary oversampling, we apply a maximum cutoff on the num-

ber of shadow ray evaluations for a pixel. For our Iterative Adaptive Sampling al-

gorithm, we set a maximum of fifteen passes. We chose this maximum because we

1The black point is the pixel intensity below which all values are mapped to
black by our tone-mapper.

71

Figure 4.11: Number of Rendering Passes Performed per Pixel

72

found that the image does not show any perceptible improvement after a certain

number of passes. For the reference solution we set a maximum of 20,000 shadow

rays. The ideal solution would be to use a more sophisticated stopping criterion

based on perceptual metrics.

On the other hand, it is also important not to prematurely label a pixel as

black simply because all shadow rays evaluated for the pixel were occluded. For

both our algorithm and the reference solution, we require a minimum number of

shadow ray evaluations before determining that a pixel is completely in shadow

and therefore black. These minimums are necessary to prevent speckling in our

images from false-positives (i.e. prematurely labeling pixels as black).

Since our adaptive algorithm aggregates sample data across multiple pixels and

multiple light sources, we can more reliably determine if a pixel is indeed black. In

our algorithm, if we have not sampled a visible light after at least 3 passes and 250

shadow rays, we stop sampling the pixel and set it to black. This works very well

in almost all situations and produces no false-positives. In both the Grand Central

and Ponderosa scenes, the reference solution has difficulty in reliably detecting

a fully occluded surface within a pixel unless given the much larger minimum

threshold of 2,500 shadow rays. The optimum number for the reference solution is

highly scene dependent, but in order to provide a valid comparison, we performed

several renderings and set the value as low as possible for each scene.

Chapter 5

Conclusion

Through the use of intelligent sampling over the light sources, Iterative Adaptive

Sampling is able to achieve nearly an order of magnitude speed-up over a standard

Monte-Carlo ray tracer in architectural scenes containing complex direct illumi-

nation. We designed our algorithm based upon observations we made on average

light source visibility patterns. While a scene with many lights may have nearly

all the lights contributing in a single image, on average only a small subset of the

lights actually affect the illumination of any surface intersection point. We are

able to achieve our performance improvement as a result of several novel compo-

nents working together to profit from our finding on the average visibility of light

sources.

Our primary performance gain comes from reducing the amount time spent

on the most expensive part of Monte-Carlo ray tracing, namely computing the

visibility of light samples. We evolve adaptive probability density functions (PDFs)

that automatically find and exploit conditions such as occlusion, glossy highlights,

and partial visibility, which causes soft shadows. We rely on statistical feedback

from previously computed light samples to guide the optimization of the PDF.

73

74

To increase the effectiveness and reliability of our sampling statistics we take

advantage of the coherence in image space by considering our image in 8× 8 pixel

blocks. This allows us to aggregate sampling information for feedback on a block

level as well as the pixel level. We use block and pixel sampling statistics to

construct component block and pixel PDFs, respectively. These component PDFs

are blended together along with a uniform PDF to generate a final PDF over the

light sources. The initial pass uses only the uniform PDF since no feedback is

yet available. Early feedback-driven passes weight the block PDF most heavily

because it is averaged over the most data and converges faster. As more data

becomes available, the more localized pixel PDF becomes more reliable and is

given larger weights, since it is able to locally adapt more precisely.

We are also able to capitalize on the coherence of light source visibility in

world space through the use of light clusters. Furthermore, we use these clusters

to stratify our sampling more effectively. We also use a form of surface intersection

point clustering on a per-pixel level to achieve low-cost pixel anti-aliasing. The use

of clustering for light sources and intersection points also reduces the overhead

needed for PDF construction. Because our algorithm renders images in small 8×8

pixel blocks, it is easily parallelized for distributed computing.

Our algorithm can handle many different types of light sources including point

lights, area lights and environment maps for natural lighting. One of the greatest

strengths of Iterative Adaptive Sampling as compared to sampling according to a

fixed PDF is that the use of feedback data helps to greatly reduce the number of

shadow ray tests to occluded light sources. One possible extension would be to

also use feedback data to reduce the number of shadow rays evaluated for fully

visible light sources. Often times a single sample can accurately determine the

75

contribution of an area light in the case that it is fully visible.

In summary, the use of an adaptive PDF along with clustering and sample

aggregation has provided us with nearly a 10× performance improvement on several

scenes with complex lighting. It is hoped that these types of strategies can be used

in future algorithms to accelerate the computations for rendering complex real

world scenes.

Appendix A

Proofs and Equations

A.1 Statistics

The average value of a function f is known as the mean µ. Sometimes it is

convenient to use expected value notation 〈 〉 to represent the average value of

a function.

For direct illumination with area lights, we are trying to solve for this mean

value. We do not know the actual distribution of the function, but we do have a set

of N sample points1 (x1 · · ·xN) that estimate the mean. We refer to the average

value of these samples as the sample mean, m, which is an unbiased estimator for

µ.

m =
1

N

N∑
i=1

xi

1In our system xi = L(~x, ~yi), where L(~x, ~yi) is defined by Equation 3.5

76

77

Variance, σ2 is a measure of the deviation a set of data points has from its

expected value.

σ2 = 〈(x− µ)2〉 (A.1)

Sometimes it is convenient to rearrange the terms in Equation A.1 as:

σ2 = 〈x2〉 − µ2 (A.2)

Again, in the case where we do not know the underlying distribution, we may

compute the sample variance of N samples as:

s2
N =

1

N

N∑
i=1

(xi −m)2

s2
N , however, is not an unbiased estimator of σ2. Biased-corrected sample variance

is defined as:

s2
N−1 =

1

N − 1

N∑
i=1

(xi −m)2

The main problem with using s2
N over s2

N−1 is that s2
N is likely to underestimate

the variance, especially for a low sample count. Underestimating the variance will

prematurely terminate rendering and result in noisy images. It is better to be

conservative and oversample than to undersample and get a wrong result.

Since we use sample variance as a stopping condition, we not only want to be

conservative, but what we really we want to know is the variance in our estimator

of the mean. In effect we want to know how good of an estimate the sample mean

m is of the actual mean µ. The estimator we use, s2 does not converge to the final

value of σ2; rather it decreases linearly with the number of samples, N we use for

78

our estimator. This is the behavior we want because we expect a decrease in error

with additional sampling.

s2 =

 V if E < 0

V −N · E2 otherwise
(A.3)

where N is the number of samples and V and E are as defined below:

V =

∑N
i=1 x2

i

N2

E =
m

N
− 3 ·

√
V

N2

A.2 Minimizing Cluster Variance

Here we provide the derivation of our weighting parameters for each light cluster

based on sample data. Our derivation is based on area light sources, but we

can extend it to apply to clusters as well due to their properties described in

Section 3.4.1. We work with a few simple assumptions that we use in finding the

variance-minimizing PDF. For any point receiving direct illumination we assume

that:

(1) The exitant radiance due to a light source is uniform across the source

(2) Visibility is the only source of variance when sampling a cluster

These assumptions are not always true in practice, but visibility is definitely

the largest source of variance and thus we will work to minimize variance due to

partial visibility. It is important to note that we use these assumptions only to

79

approximate the ideal probabilities to assign to lights. Our algorithm does not

depend on these assumptions being true.

Consider a single point ~x illuminated by two fully visible light sources con-

tributing exitant radiance L1 and L2 at ~x. If each light is partially visible by some

amount ui, then then exitant radiance due to each cluster will be u1 L1 and u2 L2

assuming the exitant radiance is uniform across the source. We want to find the

distribution of samples between the sources that minimizes variance. Let p be

the probability of sampling the first light source and 1 − p be the probability of

sampling the second. For practicality, we use the definition of variance in Equa-

tion A.2. Thus, we can express the variance of total exitant radiance in this case

as σ2(f).

σ2(f) = 〈f 2〉 − 〈f〉2 (A.4)

〈f 2〉 = u1 p

(
L1

p

)2

+ u2 (1− p)

(
L2

1− p

)2

〈f〉 = u1 p
L1

p
+ u2 (1− p)

L2

1− p

If we differentiate σ2(f) (Equation A.4) with respect to p and set the result

equal to zero we find that:

p =

√
u1 L1√

u1 L1 +
√

u2 L2

1− p =

√
u2 L2√

u1 L1 +
√

u2 L2

80

In general for any number of light sources the probability pi for light i that

minimizes the variance is: pi ∝
√

ui Li. If C is the contribution of a light source

according to our sample data (which already contains the visibility term) and u is

the unoccluded fraction of the light (also according to sample data) then we can

assume C = u L if the exitant radiance is uniform across the source. Therefore,

we chose our sampling to be proportional to
√

u L =
√

u C
u

= C√
u
.

Bibliography

[AAM03] Ulf Assarsson and Tomas Akenine-Möller. A geometry-based soft
shadow volume algorithm using graphics hardware. ACM Transac-
tions on Graphics, 22(3):511–520, July 2003.

[Ama84] John Amanatides. Ray tracing with cones. In Computer Graphics
(Proceedings of SIGGRAPH 84), volume 18, pages 129–135, July 1984.

[AMA02] Tomas Akenine-Möller and Ulf Assarsson. Approximate soft shadows
on arbitrary surfaces using penumbra wedges. In Rendering Techniques
2002: 13th Eurographics Workshop on Rendering, pages 297–306, June
2002.

[ARBJ03] Sameer Agarwal, Ravi Ramamoorthi, Serge Belongie, and Hen-
rik Wann Jensen. Structured importance sampling of environment
maps. ACM Transactions on Graphics, 22(3):605–612, July 2003.

[ARHM00] Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich, and Laurent
Moll. Efficient image-based methods for rendering soft shadows. In
Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceed-
ings, Annual Conference Series, pages 375–384, July 2000.

[ARJ90] John M. Airey, John H. Rohlf, and Frederick P. Brooks Jr. Towards
image realism with interactive update rates in complex virtual building
environments. volume 24, pages 41–50, March 1990.

[BN76] James F. Blinn and Martin E. Newell. Texture and reflection in com-
puter generated images. Commun. ACM, 19(10):542–547, 1976.

[CMS87] Brian Cabral, Nelson Max, and Rebecca Springmeyer. Bidirectional
reflection functions from surface bump maps. In Proceedings of the 14th
annual conference on Computer graphics and interactive techniques,
pages 273–281. ACM Press, 1987.

[CON99] Brian Cabral, Marc Olano, and Philip Nemec. Reflection space im-
age based rendering. In Proceedings of the 26th annual conference on

81

82

Computer graphics and interactive techniques, pages 165–170. ACM
Press/Addison-Wesley Publishing Co., 1999.

[DBB03] Phil Dutre, Philippe Bekaert, and Kavita Bala. Advanced Global Illu-
mination. A K Peters, Natick, MA, 2003.

[FBG02] Sebastian Fernandez, Kavita Bala, and Donald P. Greenberg. Local
illumination environments for direct lighting acceleration. In Rendering
Techniques 2002: 13th Eurographics Workshop on Rendering, pages 7–
14, June 2002.

[Fer04] Sebastian Fernandez. Interactive Direct Illumination in Complex En-
vironments. PhD thesis, Cornell University, August 2004.

[Gre86] Ned Greene. Environment mapping and other applications of world
projections. IEEE Comput. Graph. Appl., 6(11):21–29, 1986.

[HDG99] David Hart, Philip Dutré, and Donald P. Greenberg. Direct illumi-
nation with lazy visibility evaluation. In Proceedings of SIGGRAPH
99, Computer Graphics Proceedings, Annual Conference Series, pages
147–154, August 1999.

[Ige99] Homan Igehy. Tracing ray differentials. In Proceedings of SIGGRAPH
99, Computer Graphics Proceedings, Annual Conference Series, pages
179–186, August 1999.

[KM00] Jan Kautz and Michael D. McCool. Approximation of glossy reflection
with prefiltered environment maps. In Graphics Interface, pages 119–
126, 2000.

[KVHS00] Jan Kautz, Pere-Pau Vázquez, Wolfgang Heidrich, and Hans-Peter
Seidel. A unified approach to prefiltered environment maps. In Ren-
dering Techniques 2000: 11th Eurographics Workshop on Rendering,
pages 185–196, June 2000.

[LG95] David Luebke and Chris Georges. Portals and mirrors: Simple, fast
evaluation of potentially visible sets. In 1995 Symposium on Interactive
3D Graphics, pages 105–106, April 1995.

[MH84] Gene S. Miller and C. Robert Hoffman. Illumination and reflection
maps: Simulated objects in simulated and real environments. SIG-
GRAPH 84 Advanced Computer Graphics Animation course notes,
1984.

[PPD98] Eric Paquette, Pierre Poulin, and George Drettakis. A light hierar-
chy for fast rendering of scenes with many lights. Computer Graphics
Forum, 17(3):63–74, 1998.

83

[PS89] J. Painter and K. Sloan. Antialiased ray tracing by adaptive pro-
gressive refinement. In Proceedings of the 16th annual conference on
Computer graphics and interactive techniques, pages 281–288. ACM
Press, 1989.

[PSS98] Steven Parker, Peter Shirley, and Brian Smits. Single sample soft
shadows. Technical Report UUCS-98-019, October 1998.

[RH01] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for
irradiance environment maps. In Proceedings of ACM SIGGRAPH
2001, Computer Graphics Proceedings, Annual Conference Series,
pages 497–500, August 2001.

[RH02] Ravi Ramamoorthi and Pat Hanrahan. Frequency space environment
map rendering. ACM Transactions on Graphics, 21(3):517–526, July
2002.

[SG94] A. James Stewart and Sherif Ghali. Fast computation of shadow
boundaries using spatial coherence and backprojections. In Proceedings
of SIGGRAPH 94, Computer Graphics Proceedings, Annual Confer-
ence Series, pages 231–238, July 1994.

[SKS02] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting en-
vironments. ACM Transactions on Graphics, 21(3):527–536, July 2002.

[SS98] Cyril Soler and François X. Sillion. Fast calculation of soft shadow tex-
tures using convolution. In Proceedings of SIGGRAPH 98, Computer
Graphics Proceedings, Annual Conference Series, pages 321–332, July
1998.

[SWZ96] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte carlo
techniques for direct lighting calculations. ACM Transactions on
Graphics, 15(1):1–36, January 1996.

[TS91] Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interac-
tive walkthroughs. In Computer Graphics (Proceedings of SIGGRAPH
91), volume 25, pages 61–69, July 1991.

[War94] Gregory J. Ward. The radiance lighting simulation and rendering sys-
tem. In Proceedings of the 21st annual conference on Computer graph-
ics and interactive techniques, pages 459–472. ACM Press, 1994.

[WBS03] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Interactive global
illumination in complex and highly occluded environments. In Euro-
graphics Symposium on Rendering: 14th Eurographics Workshop on
Rendering, pages 74–81, June 2003.

