
INTERACTIVE DIRECT ILLUMINATION IN

COMPLEX ENVIRONMENTS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Sebastian Pablo Fernandez

August 2004

c© 2004 Sebastian Pablo Fernandez

ALL RIGHTS RESERVED

INTERACTIVE DIRECT ILLUMINATION IN COMPLEX ENVIRONMENTS

Sebastian Pablo Fernandez, Ph.D.

Cornell University 2004

Modeling the interaction of light with real-world environments is a difficult prob-

lem. In particular, the geometric and lighting complexity required to approximate

reality are huge challenges. The “Ray Tracing” algorithm is well-suited to deal

with geometric complexity since its performance is sub-linear in the number of ge-

ometric primitives. However, its computational cost is linear in the number of light

sources. This leads to poor performance in environments with complex lighting.

In this thesis we present two algorithms that accelerate the rendering of direct

lighting for complex environments within the context of a ray tracer. The first al-

gorithm, “Local Illumination Environments” addresses direct lighting acceleration

in scenes with up to a few dozen light sources. The second algorithm, “Hierarchical

Light Clusters” accelerates direct lighting in models with hundreds to thousands

of light sources.

The “Local Illumination Environments” algorithm reduces the cost of comput-

ing light visibility, the most expensive part of the direct lighting computation. It

does so through an asynchronous process that caches, in a spatial data structure,

the geometric primitives required to evaluate light visibility. This approach com-

pletely eliminates the cost of light visibility for fully visible and fully occluded light

sources. It also substantially reduces the time to evaluate visibility from partially

visible light sources by eliminating the cost of a traditional acceleration structure.

The “Hierarchical Light Clusters” algorithm reduces direct lighting computa-

tion in environments with very large numbers of light sources. This is done by

using a single bright light to approximate the contribution of a group of lights.

We present a locally adaptive technique that determines when this approximation

is valid. We also introduce three algorithms that make use of this approach to

provide varying levels of quality and performance.

“Local Illumination Environments” and “Hierarchical Light Clusters” both pro-

vide order-of-magnitude acceleration in the computation of direct lighting over

traditional ray tracing approaches. Together, they can be used to interactively

generate images of models of widely varying geometric and lighting complexity.

Biographical Sketch

Sebastian Pablo Fernandez was born in Cordoba, Argentina in 1972. He immi-

grated to the United States in 1980 and grew up in Orange County, California.

He obtained his Bachelor’s degree in Electrical Engineering and Computer Science

from the University of California at Berkeley in 1994. He then moved to Ithaca,

New York where he obtained his Doctorate in Computer Science from Cornell

University in 2004.

iii

For Isabel and Silvina

iv

Acknowledgements

I would like to thank Kavita Bala, Bruce Walter and Moreno Piccolotto for their

collaboration, friendship and coffee through all these years. Their respective lessons

on hard work, cat-herding and collaboration-through-caffeine were particularly in-

spiring.

I’d also like to thank Don Greenberg for the opportunity to work at this lab

and for his patience through this long and arduous process.

Thanks to Hurf Sheldon for maintaining an insanely heterogeneous system of

computers without losing it, and for not constraining our creativity. Thanks to

Linda Stephenson for always keeping me on Don’s radar. Thanks to the dozens of

PCG students and staff through the years who made it all very fun and interesting.

Finally, I would like to thank my mom, Isabel Correal, for helping me get here,

and my fiancee, Silvina Dejter, for standing by my side and seeing it through with

me.

v

Table of Contents

1 Introduction 1

2 Background 7
2.1 Point lights . 12
2.2 Area lights . 13
2.3 Ray tracing . 15
2.4 Radiosity . 17
2.5 Two-pass algorithms . 18
2.6 Particle methods . 20
2.7 Many lights . 20
2.8 Image-based methods . 22
2.9 Conclusion . 23

3 Local Illumination Environments 24
3.1 Local Illumination Environments 27

3.1.1 LIE Construction . 28
3.1.2 Shading Using LIEs . 34

3.2 Masking . 34
3.3 System Description . 40
3.4 Results . 42
3.5 Conclusions . 48

4 Local Illumination Environment Construction 49
4.1 Definitions . 49
4.2 Testing methodology . 55
4.3 Fixed cell size . 56
4.4 Adaptive subdivision . 60
4.5 Quasi-Monte Carlo sampling . 66
4.6 Regular sampling . 68
4.7 Three-state LIEs . 70
4.8 Error analysis . 75
4.9 Future Work . 78
4.10 Conclusion . 81

vi

5 Hierarchical Light Clusters 83
5.1 Concepts . 84

5.1.1 Light Clusters . 86
5.1.2 Cluster Hierarchy Tree . 88
5.1.3 Finding a Cut . 90
5.1.4 Error Estimates . 94

5.2 Dense Sampling Algorithm . 100
5.3 Sparse Sampling Algorithms . 102

5.3.1 Weighted Sum Reconstruction Algorithm 103
5.3.2 Tree-Based Reconstruction Algorithm 107

5.4 System . 116
5.4.1 Parallel System . 116
5.4.2 Nearest Samples . 117
5.4.3 Sample Priorities . 118
5.4.4 Storage . 118

5.5 Results . 121
5.6 Conclusion . 124

6 Conclusion 133

Bibliography 137

vii

List of Figures

1.1 Grand Central Station . 3
1.2 Mosque de Cordoba . 4
1.3 Gustavus Adolphus College Basketball Court 5
1.4 Car show . 6

2.1 Rendering Equation . 8
2.2 Reformulation of Rendering Equation 9
2.3 Direct Illumination Formula . 10

3.1 LIE example . 25
3.2 State diagram for LIE construction 29
3.3 LIE construction example, part 1. 32
3.4 LIE construction example, part 2. 33
3.5 Shadow masking by other lights . 35
3.6 Contrast sensitivity function . 37
3.7 Rendering cost without taking advantage of masking 38
3.8 Rendering cost taking advantage of masking 39
3.9 System structure . 41
3.10 Science Center . 45
3.11 Bar . 46
3.12 Mosque de Cordoba . 47

4.1 Shadow ray space . 52
4.2 Shadow ray space with cells . 53
4.3 View shadow ray space . 54
4.4 Child cells are never more complex than their parents 57
4.5 Child cells require more samples than their parents 57
4.6 Fixed tree depth (Bar) . 58
4.7 Fixed tree depth (Grand Central Station) 59
4.8 Fixed tree depth (Mosque de Cordoba) 60
4.9 Adaptive cell subdivision (Bar) . 62
4.10 Adaptive cell subdivision (Grand Central Station) 63
4.11 Adaptive cell subdivision (Mosque de Cordoba) 64
4.12 QMC vs. Random sampling . 67
4.13 Regular sampling . 69

viii

4.14 Blocker list vs. three-state LIEs on the Bar scene 72
4.15 Blocker list vs. three-state LIEs on the Grand Central Station scene 73
4.16 Blocker list vs. three-state LIEs on the Mosque de Cordoba scene . 74
4.17 (1− s)t, for some values of s . 75
4.18 (1− s)t, for some values of t . 76
4.19 Number of features times feature size 77

5.1 Terms used in geometry factors. 85
5.2 Light clustering in a simple scene with four point lights 87
5.3 Cluster hierarchy tree and three example cuts for a simple scene . . 91
5.4 Finding a cut . 92
5.5 Terms used in bounding distance and cosine 96
5.6 The dense sampling algorithm . 101
5.7 Sample generation in the weighted sum reconstruction algorithm . 104
5.8 Sample reconstruction in the weighted sum reconstruction algorithm105
5.9 The Epanechnikov weighting function. 106
5.10 Irradiance discontinuities are common in environments with many

lights. 108
5.11 Common cluster irradiances can occur even when total irradiances

differ . 110
5.12 The sample generation portion of the tree-based reconstruction al-

gorithm . 113
5.13 The reconstruction portion of the tree-based reconstruction algorithm114
5.14 The interactive system . 117
5.15 Packing a sample cut into two arrays 120
5.16 Characteristics of the models used for testing. 122
5.17 Results for Grand Central Station 125
5.18 Difference images for Grand Central Station 126
5.19 Results for Mosque de Cordoba . 127
5.20 Difference images for Mosque de Cordoba 128
5.21 Results for Residential Kitchen . 129
5.22 Difference images for Residential Kitchen 130

ix

Chapter 1

Introduction

Global illumination describes the steady state distribution of light in an environ-

ment. Modeling global illumination in synthetic environments allows us to visualize

what those environments would actually look like if they existed. Being able to

model global illumination quickly would allow us to walk through those environ-

ments and be able to interact with a world that looks real. However, existing

algorithms can take hours or even days to compute a global illumination solution,

allowing for little interactivity.

This thesis focuses on interactive rendering and an important subproblem of

global illumination, direct illumination. A solution to the direct illumination prob-

lem generates an image of what an environment would look like if photons were

only able to bounce once off a surface before reaching our eye. Solving this problem

is important for three reasons. One, it is commonly required to solve this subprob-

lem when computing a global illumination solution. Two, it frequently provides

a very reasonable first approximation to the global illumination solution and is

“good enough” for many purposes. Three, computing accurate direct shadows is

important for spatial perception.

1

2

As will be described in the Background chapter, there is a plethora of algo-

rithms dealing with interactive direct illumination. However, the majority of these

techniques address only simple environments. This thesis deals with interactive

direct lighting in complex environments.

There are three components to complexity in rendering algorithms. There is

geometric complexity, which refers to the number of objects in the scene and their

composition (simple polygons or more complex parametric surfaces). There is

material complexity which refers to the reflective properties of surfaces, ranging

from diffuse reflection to glossy and bumpy surfaces. There is lighting complexity,

which refers to the number of light sources, their emission properties, and whether

indirect illumination is considered. As illustrated by Figures 1.1, 1.2, 1.3, and 1.4,

the real world exhibits all of these complexities.

In this thesis, we will be addressing the problem of how to render these complex

scenes interactively. We will be using an existing technique, called “ray tracing”, to

deal with geometric and material complexity. Our work will show how ray tracing

can be adapted to also handle high lighting complexity.

Chapter 2 describes the problem of direct illumination. It provides a mathe-

matical formulation of the problem. The chapter also discusses a wide range of

previous approaches to computing direct and indirect illumination. We discuss the

applicability of each approach to the problem.

Chapter 3 describes an algorithm called “Local Illumination Environments”

for interactively rendering scenes of moderate lighting complexity. It also gives a

description of the parallel software system developed to solve it and issues involved

in the implementation of the solution.

Chapter 4 explores the parameter space of the algorithm described in Chapter 3

3

Figure 1.1: A picture of Grand Central Station in New York City (Bart God-

dyn, http://users.skynet.be/bgoddyn/photo/ny17.jpg). This environment con-

tains hundreds of lights, specular reflections from windows and glass, and glossy

reflections from the floor. Note that almost almost all lights are visible from almost

all surfaces, with minimal occlusion.

and basic extensions. We describe results and compare them to existing solutions

to the direct lighting problem.

Chapter 5 describes “Hierarchical Light Clusters”, an algorithm for dealing

with scenes of very high lighting complexity. We describe several variants of the

algorithm for different speed/quality requirements.

Finally, Chapter 6 concludes with a summary of the thesis and possible future

extensions to the algorithms described therein.

4

Figure 1.2: Mosque de Cordoba (Leith Davis, http://www.sfu.ca/

leith/cordoba.jpg). This environment contains highly detailed geometry and

many lights and exhibits direct and indirect lighting.

5

Figure 1.3: Gustavus Adolphus College Basketball Court

(http://www.gustavus.edu/ oncampus/athletics/ atr/images/gusyoungcourt.jpg).

This environment contains dozens of lights and glossy reflections off the floor of

the court.

6

Figure 1.4: Car Show (Donald P. Greenberg’s slide collection). This environment

contains hundreds of lights, highly detailed car geometries and specularly reflective

materials.

Chapter 2

Background

The global illumination problem can be defined thus: Given viewing parameters,

the geometry describing the scene, a set of materials representing light reflection

and refraction properties on surfaces, and a set of light sources, compute the steady-

state distribution of light in a way that can be displayed on a computer screen.

Kajiya [Kaj86] formulated this problem as the Rendering Equation:

L(x→ Φ) = Le(x→ Φ) +

∫
Ω

L(x← Θ)fr(Φ, x, Θ)cosθdΘ (2.1)

where

• L(x→ Φ) is the radiance exiting from a point x in the direction Φ

• Le(x→ Φ) is the radiance directly emitted from a point x in the direction Φ

(this term is non-zero only when x is on a light source)

• L(x← Θ) is the radiance incident on a point x from the direction Θ

• fr(Φ, x, Θ) is the Bidirectional Reflectance Distribution Function (BRDF)

and defines the fractional radiance reflected towards Φ at point x that comes

7

8

Figure 2.1: Rendering Equation

from the direction Θ

• θ is the angle between Θ and the normal to the surface at x

• Ω is the integration domain, the set of directions represented by a hemisphere

centered at x and bounded by the surface being rendered

An important subproblem of global illumination is that of direct illumination,

the illumination due to a single bounce of light from all sources to the eye. We

obtain the Direct Illumination Formula from the Rendering Equation by first refor-

mulating the Rendering Equation from an integral over the hemisphere of incident

directions to an integral over all surface points:

L(x1 → x0) = Le(x1 → x0) +

∫
A

L(x2 → x1)fr(x0, x1, x2)
cosθ1cosθ2

r2
v(x1, x2)dx2

(2.2)

9

Figure 2.2: Reformulation of Rendering Equation

where

• L(x1 → x0) is the radiance from a point x1 in the direction of the point x0

• Le(x1 → x0) is the radiance directly emitted from a point x1 in the direction

of the point x0 (this term is non-zero only when x1 is on a light source)

• fr(x0, x1, x2) is the Bidirectional Reflectance Distribution Function (BRDF)

and defines the fractional radiance reflected towards point x0 at point x1 that

comes from point x2

• θ1 is the angle between the ray from x1 to x2 and the normal to the surface

at x1

• θ2 is the angle between the ray from x2 to x1 and the normal to the surface

at x2

10

• r is the distance from x2 to x1

• v(x1, x2) is the visibility function and is defined as 1 if points x1 and x2 are

mutually visible and 0 otherwise

Replacing the total radiance term, L, with an Le term, which represents only

the radiance directly emitted by a surface, gives us the Direct Illumination Formula.

Figure 2.3: Direct Illumination Formula

Ld(x1 → x0) = Le(x1 → x0) +

∫
A

Le(x2 → x1)fr(x0, x1, x2)
cosθ1cosθ2

r2
v(x1, x2)dx2

(2.3)

where

• Ld(x1 → x0) is the direct radiance from a point x1 in the direction of the

point x0. Direct radiance is the radiance due solely to direct illumination

and emission

11

• Le(x1 → x0) is the radiance emitted from a point x1 in the direction of the

point x0 (this term is non-zero only when x1 is on a light source)

• fr(x0, x1, x2) is the Bidirectional Reflectance Distribution Function (BRDF)

and defines the fractional radiance reflected towards point x0 at point x1 that

comes from point x2

• θ1 is the angle between the ray from x1 to x2 and the normal to the surface

at x1

• θ2 is the angle between the ray from x2 to x1 and the normal to the surface

at x2

• r is the distance from x2 to x1

• v(x1, x2) is the visibility function and is defined as 1 if points x1 and x2 are

mutually visible and 0 otherwise

Current methods of computing the Direct Illumination Formula suffer from

a variety of drawbacks. Some approaches limit the type of scene that can be

rendered, restricting the use of area light sources, glossy materials, and/or non-

polygonal geometry. Other techniques are fully general but do not scale well with

complex scenes. This thesis will present algorithms for computing the Direct Light-

ing Formula at interactive rates in highly complex scenes without restricting the

characteristics of the scenes that can be rendered.

We will now describe some of the more important techniques for solving the

direct illumination problem including approaches to solve the more general global

illumination problem since that is a superset of direct illumination.

12

2.1 Point lights

The algorithms discussed in this section make the assumption that the light sources

subtend a small solid angle to the surfaces they illuminate and thus behave as

“point lights”. This means that certain factors in the direct lighting equation can

be assumed to be constant and can be taken out of the integral. For example,

since a point light has zero area, the visibility factor is assumed to be constant.

Crow [Cro77] introduced shadow volumes. Shadow volumes construct polyhe-

dra from the point light source and the edges of the polygonal model. Surfaces

in the model are determined to be in shadow if they are completely contained

by a shadow polyhedron. The problems with this approach arise from having to

perform depth calculations with the surfaces of these polyhedra. If the scene is

geometrically complex, this can be expensive. Additionally, elongated shadows can

significantly increase rendering cost.

The Shadow Map technique was presented in [Wil78]. The scene is rendered

from the point of view of the light source on a discrete grid. At each pixel in the

grid, the distance from the light to the nearest surface point to the light through

that pixel is cached. When rendering the scene, this distance is compared to

the distance from the light of a surface point seen from the eye. If the point is

farther away, it is considered to be in shadow, otherwise it is lit. This approach

suffers from a few problems. First, it is limited to point light sources. Second,

the assumption that the depth is constant over any pixel within the shadow map

can lead to “jaggy” shadows or aliasing. Finally, the shadow map cache must be

constructed for each light, making this technique expensive in environments with

many lights.

Light Buffers [HG86] and Adaptive Shadow Maps [FFBG01] both address the

13

problem of aliasing. The Light Buffer approach does so by storing a list of geometry

that causes the shadow within a particular pixel of the shadow map. Shadow tests

can then be done analytically, removing any artifacts. Adaptive Shadow Maps

take the approach of using a hierarchy of shadow maps, refining a shadow map

to a required resolution based on the user viewpoint. Although both of these

approaches remove the problem of discretization artifacts in shadows, they’re both

constrained to be used in environments with a small number of point light sources.

The algorithms discussed in this section can generate images quickly. However,

they make the unrealistic assumption that lights are point sources. This assump-

tion causes discontinuities in the direct illumination (“hard shadows”) which leads

to renderings that appear synthetic.

2.2 Area lights

In the real world, lights are not infinitesimally small. Lights subtend a non-zero

solid angle, casting soft shadows. The following set of algorithms recognize this

and attempt to render the effects expected from realistic lights.

Amanatides [Ama84] introduced Cone Tracing. Assuming circular or spherical

light sources, a cone is constructed from the point to be rendered to the light

source. The proportion of the cone obstructed by scene geometry indicates the

level of intensity of the penumbra. This approach has two problems. First, it

assumes spherical or circular light sources. Second, analytical intersections with

cones can be hard to compute for general geometry.

Stewart [SG94] analytically computed the umbral and penumbral discontinuity

events for every light against every object in the scene. This information could

14

then be used to generate a mesh that would not cross lighting discontinuities. This

approach, however, is limited to purely polygonal environments. Furthermore, it

identifies discontinuities which may not be perceptually apparent in an environ-

ment with many lights.

Soler and Sillion [SS98] approximated soft shadows for interactive viewing using

an image-processing approach. They found objects that were at similar distances

from the light plane and projected them onto a single plane. They then took

advantage of the fact that when the light, occluder, and receiver lie on parallel

planes, the shape of the shadow is a convolution of the shape of the light with the

shape of the occluder. Using hardware convolution, they were then able to obtain

soft shadows at interactive rates. Unfortunately, this approximation breaks down

when the occluders are mostly perpendicular to the light source.

Agrawala et al. [ARHM00] presented two approaches to dealing with area

lights. The first combines multiple shadow maps into a single layered shadow

map. This allowed for fast soft shadows but introduced significant errors since

interpolation of shadow maps can be an inaccurate approximation. Their second

approach computes soft shadows by densely sampling the light source, but relying

on coherence in the shaded points to reduce the number of actual shadow rays

that have to be cast. The drawback to this approach is that it must reproject a

potentially large number of occlusion points per light and thus does not scale well

when the environment consists of a large number of lights.

Akenine-Moeller [AMA02] and Assarsson [AAM03] approximated the soft shad-

ows cast by area lights through the use of “penumbra wedges”. The algorithm

operates in two stages, first determining a hard shadow through shadow volumes

as if only the center of the light was illuminating the scene. The second pass at-

15

tempts to correct the visibility by computing the amount of light coverage along

the silhouette of the occluding object. This approach generates realistic-looking

soft shadows at interactive rates for individual lights. However, because they gen-

erate the shadows cast by each object independently, they cannot correctly render

shadows cast by multiple objects whose shadows overlap.

The preceding methods are a significant improvement over point-light approxi-

mations. However, they are still limited in use. Some of the techniques are geared

towards single-image generation due to slow rendering speeds. The algorithms that

are efficient enough to work at interactive rates are approximations which generate

erroneous results under common conditions.

2.3 Ray tracing

Ray tracing, introduced by Whitted [Whi80], simulates the transport of light

through the use of geometric optics. Rays of light are traced backwards from

the camera through the image plane to find the first intersected surface. Based on

material properties, the ray recursively bounces from specular surface to specular

surface, modulating the color of the ray, until it lands on a diffuse surface. The

color thus computed is used to generate a pixel value at that point on the image

plane.

Cook [CPC84] showed that Monte Carlo integration could be used in combina-

tion with ray tracing to solve the Rendering Equation. This combination makes

ray tracing a very general technique, allowing renderings that include any type of

geometry, material, light source, or camera. This was an impressive result, pro-

viding the first full global illumination solutions, and the algorithm is, to this day,

16

generally used to produce the reference images against which other techniques are

measured.

Although powerful in its generality, ray tracing is slow. This is due to the

expense of computing ray-scene intersections. As a ray bounces around the scene

a ray-tracing algorithm must determine the first visible surface from a point in a

particular direction. This ray-scene intersection could be calculated, albeit naively,

by computing the intersection point of the ray with every geometric primitive in

the scene and finding the intersection closest to the source point.

Several techniques have been proposed to perform fewer intersections than this

naive approach. These are usually in the form of “acceleration structures”, such

as regular grids, KD-trees, bounding volume hierarchies, etc. [Gla89], all of which

reduce the cost of the ray-scene intersection. However, they suffer from a few

drawbacks. First, they tend to be too conservative, not reducing the number of

visibility tests as much as possible. Second, the cost of traversing the data structure

can be a significant portion of the total computation time. Third, they do not have

predictable memory access, making it hard to obtain the data the processor needs

to work on ahead of time. As processor speeds quickly outpace memory latency,

this last drawback becomes more and more important.

Haines et al. [HW94] showed how to compute the set of objects found in the

shaft between two axis-aligned bounding boxes. By being able to precompute this

set of objects, they avoid the overhead of a traditional acceleration structure while

still significantly reducing the number of ray-primitive intersection tests that have

to be performed. However, this method is too conservative. It requires intersection

tests to be performed in the very common case of full occlusion between light and

receiver and it can include many unnecessary blockers.

17

Bala et al. [BDT99] showed how to accelerate ray tracing by constructing four-

dimensional interpolants and analytically determining when they could be used

without introducing error above a given threshold. However, this method did not

scale well with the number of light sources and was constrained to point lights.

While most of these techniques handle the full range of possible scenes, their

rendering times are quite slow. For environments with many lights, these al-

gorithms can only be used to generate individual images, not interactive walk-

throughs.

2.4 Radiosity

Radiosity algorithms compute the radiosity of the surfaces in the scene and cache

the resulting values on the surfaces themselves. Radiosity is a spatially variant but

directionally invariant quantity defined as:

B(x) =

∫
Ω

L(x← Θ)fr(x)cosθdΘ (2.4)

where

• B(x) is the radiosity at point x

• L(x← Θ) is the radiance incident on a point x from the direction Θ

• fr(x) is the Bidirectional Reflectance Distribution Function (BRDF), in this

case varying over space but not direction

• θ is the angle between Θ and the normal to the surface at x

• Ω is the integration domain, the hemisphere centered at x and bounded by

the surface being rendered

18

Because it is directionally invariant, the radiosity value can be reused even as

the camera changes positions. Thus, it is an object based rather than image based

solution. However, the algorithm does assume that the surfaces are Lambertian

(fr is not directionally variant).

The original radiosity paper [GTGB84] stored radiosity information directly

on the polygons making up the model or on fixed-size meshes subdividing these

polygons. However, although radiosity is directionally invariant, it does vary spa-

tially and fixed meshes are inadequate in representing the spatial discontinuities

in radiosity. Subsequent approaches [CCWG88] allowed for hierarchical meshes

whose size adapted to match discontinuities. However they had the problem that

a very large number of small mesh elements were needed to capture discontinu-

ities that did not match the subdivision edges of the meshes. [HSA91] introduced

radiosity transfer at different levels of the patch hierarchy in order to reduce the

high computational cost associated with very fine patches.

Other approaches ([LTG92],[DDP97]) actually fit the mesh discontinuities to

analytically calculated radiosity discontinuity locations. However, these approaches

were limited in the complexity of the scenes they could support, as the number of

potential discontinuity locations quickly exploded, leading to excessive computa-

tion and memory use.

2.5 Two-pass algorithms

Radiosity algorithms are constrained in only being able to represent Lambertian

materials. As a result, algorithms were developed which used a two-phase ap-

proach, introduced by Wallace et al. [WCG87]. First, global illumination is com-

19

puted with a radiosity technique. Then, a ray-tracing phase is used on this radiosity

solution to capture the effects of non-Lambertian materials.

Kok et al. [KJ94] presented a method for accelerating the gathering phase of

a radiosity algorithm. Their algorithm selects a set of light sources to explicitly

sample and determines how well each of those light sources should be sampled

based on several criteria, such as whether the light source would require many

shadow rays or whether there appears to be a significant gradient due to the light

at the patch. Light sources not chosen to be finely sampled were instead sampled

at the corners of the patch and thus were interpolated.

Scheel et al. [SSS01] took a similar approach, expanding the criteria for selecting

explicitly sampled light sources to include perceptual metrics. Their algorithm also

allowed the decision of interpolation vs. sampling to be made separately for the

form factor and visibility terms.

While the techniques of both Kok et al. [KJ94] and Scheel et al. [SSS01] allowed

certain light sources to be interpolated instead of sampled, they did not provide

an acceleration technique for the cases in which lights do have to be sampled.

Although Scheel et al. [SSS01] did permit interpolation of some partially occluded

sources, this is possible only for broad penumbras, and not for sharper shadows.

Scheel et al. [SSS02] further refined this approach by allowing interpolation to

happen in object space, making the method more efficient in highly tessellated

scenes.

Although these approaches do compute the global illumination solution, they

are aimed at generating single images and can take many minutes to generate each

image.

20

2.6 Particle methods

The Density Estimation [WHSG97] and Photon Maps [JC98] methods compute

global illumination by modeling lighting as a flow of particles. Photons are sent out

from the light sources and bounce around according to the geometric and material

properties of the scene. Once the photons have been shot and accumulated on the

surfaces, their density can be used in a second pass to compute the radiance being

emitted from any point on a surface. The primary drawback to these approaches is

that an excessive number of photons need to be shot in order to accurately capture

sharp shadows. In addition, the particles cannot be displayed directly, requiring

either a reconstruction phase to generate smooth functions for display, or some

processing while rendering to query local particle density. These problems lead to

non-interactive performance.

2.7 Many lights

Several of the techniques described above assume a single light. When multiple

lights are present, the algorithm is simply repeated for each light and the results

are accumulated. This can work well when the scene consists of a small number of

lights, but does not scale well in more realistic scenes. The techniques described

here attempt to reduce the amount of computation performed in scenes with many

lights.

Ward [War94], accelerates the rendering of many lights using a user-specified

threshold to eliminate lights that are less important. For each pixel in an image, the

system sorts the lights according to their maximum possible contribution (assuming

no occlusion). Occlusion for each of the largest possible contributors at the pixel

21

is tested, measuring their actual contribution to the pixel, and stopping when

the total energy of the remaining lights reaches a predetermined threshold. This

approach can reduce the number of occlusion tests, however it does not reduce the

cost of occlusion tests that do have to be performed and does not do very well

when illumination is uniform.

Shirley et al. [SWZ96] propose an approach that subdivides the scene into

voxels and, for each voxel, partitions the set of lights into an important set and an

unimportant set. Each light in the important set is sampled explicitly. One light

is picked at random from the unimportant set as a representative of the set and

sampled. The assumption is that the unimportant lights all contribute the same

amount of energy.

To determine the set of important lights, they construct an “influence box”

around each light. An influence box contains all points on which the light could

contribute more than the threshold amount of energy. This box is intersected

with voxels in the scene to determine when the light is important. This is an

effective way to deal with many lights. However, the approach is geared towards

static environments and produces single images since many samples per pixel are

required to reduce the noise inherent in sampling the light set.

Paquette et al. [PPD98] present a light hierarchy for rendering scenes with many

lights quickly. This system builds an octree around the set of lights, subdividing

until there are less than a predetermined number of lights in each cell. Each octree

cell then has a “virtual light” constructed for it that represents the illumination

caused by all the lights within it. They derive error bounds which can determine

when it is appropriate to shade a point with a particular virtual light representation

and when traversal of the hierarchy to finer levels is necessary. Their algorithm

22

can deal with thousands of point lights. The major limitation of this approach is

that it does not take visibility (i.e., occlusion) into consideration.

Wald et al. [WBS03] rendered complex environments of millions of polygons and

thousands of lights at interactive rates. They did so by constructing a probability

density function (PDF) of the light sources for the current image using a few paths

in a path tracer. This PDF was then used to determine which lights to render for

the current image. However, in order for this approach to work efficiently, they

require environments with very high occlusion, where only a small number of light

sources affect the lighting in any particular viewpoint.

These techniques can substantially reduce the amount of time to render scenes

with high lighting complexity. However, most of them are aimed at generating

individual images and are too slow for interactive walkthroughs. Wald’s work,

while interactive, places significant restrictions on the types of environments where

interactive rates can be achieved.

2.8 Image-based methods

Finally, we mention some image-based methods. These methods cache rendering

information on the image plane.

Hart et al. [HDG99] used an image-plane based flood-fill to propagate blocker

information from pixel to pixel. With a list of the blockers affecting each light

at each pixel, and under the assumption that the environment is polygonal, they

were able to analytically compute soft shadows for complex environments. How-

ever, because the technique was image based, they were unable to use this blocker

information from multiple viewpoints, so the technique lends itself only to single

23

image generation and not interactive walkthroughs.

Gershbein et al. [GH00] presented an image-based method for scene relighting.

They render the scene from one viewpoint and store in the image enough informa-

tion to be able to recalculate lighting if any of the light parameters change. They

are thus able to change the lighting parameters of dozens of lights in a complex

environment at interactive rates. However, this algorithm depends upon a static

viewpoint and is therefore unsuitable for interactive walkthroughs.

2.9 Conclusion

We have discussed several methods for rendering direct and indirect lighting. Of

these, ray tracing is by far the most flexible. It allows us to use any type of

geometry, lighting, material, and camera. However, it is also the slowest. In the

chapters that follow, we will introduce algorithms that allow us to render direct

lighting of complex scenes at interactive rates without compromising the flexibility

of ray tracing. It should be noted that our use of the term “direct lighting” includes

shadows. This is in contrast to its use in the hardware rendering literature, where

the light visibility term is omitted from the calculation.

Of course, we will only be addressing the problem of direct lighting, not the

wider issue of global illumination. However, direct lighting is frequently a large

portion of the computational budget of a global illumination algorithm, specially in

the highly complex environments that will be dealt with in this thesis. Thus, this

thesis also makes a valuable contribution to the solution of the global illumination

problem.

Chapter 3

Local Illumination Environments

Computing high-quality direct illumination at interactive rates in scenes with many

lights is a hard problem. Existing hardware approaches do not scale with many

lights, have difficulties with shadows, and cannot easily deal with non-polygonal

geometry. Software-based approaches, such as ray tracers, are more promising in

their ability to scale with complex scenes and lighting [WS01]. However, such

approaches also have difficulties dealing with large numbers of light sources.

In this chapter we will introduce local illumination environments (LIEs)1, a

world-space caching approach that accelerates direct illumination for a ray tracer

in scenes with many lights. LIEs are associated with octree cells covering the

volume of the scene. Each LIE caches geometric and radiometric information:

for visible lights, the light is stored, for partially visible lights, the occluders that

might occlude shadow rays for the region are stored, and for fully occluded lights

no information is stored. We demonstrate an example of an LIE in Figure 3.1.

LIEs are based on two observations. First, the majority of the time in ray

1This is work done in collaboration with Prof. Kavita Bala and Prof. Donald
P. Greenberg and published in [FBG02].

24

25

Figure 3.1: A sample LIE. LIEs are associated with world-space octree cells. Each

LIE contains a list of lights that are at least partially visible from surfaces bounded

by the cell. For each light, the LIE also maintains a list of geometry that occludes

visibility to that light. In this example, lights L3 and L9 are fully visible from the

cell on the floor. Light L7 is blocked by G2, G8, G5, G1, and G2 from the back of

the chair. Light L2 is blocked by G2.

26

tracing is spent on evaluating the visibility of the light sources in order to render

accurate shadows (typically 70-80%). Second, the direct lighting complexity ac-

tually observed in any particular region of a scene is usually not very high. This

leads us to perform the following optimizations:

• Lights that are not visible at any point on a surface within a cell are com-

pletely ignored.

• Lights that are visible at all points on surfaces within a cell do not have any

shadow rays cast to them.

• Lights that are visible at some points on surfaces within a cell and not visible

at others have shadow rays cast to them, but these shadow rays do occlusion

testing only against a minimal set of occluders.

Thus, LIEs accelerate rendering by decreasing the number and cost of the expensive

visibility computations for shadow rays; it is these visibility computations that

make direct illumination so expensive in scenes with many lights. Additionally,

a simple perceptual metric based on Weber’s law can be used to eliminate the

contribution of fully and partially visible lights that are perceptually unimportant.

LIEs have three important properties. First, LIEs permit accurate computation

of shadows because they include geometry (the occluders) in the partially occluded

regions. Thus, they accelerate visibility without introducing error.

Second, LIEs can be easily integrated into a ray-tracing system. Because they

only cache the set of potentially visible lights and the geometry which might oc-

clude them, they do not compromise the flexibility of a ray tracer. In particular,

LIEs allow the use of any type of geometric primitive and any type of material that

27

can be supported by a ray tracer. This also means that LIEs can be used in sys-

tems that require a ray tracer to perform direct lighting, such as global illumination

systems.

Third, LIEs are designed to work interactively. They are constructed lazily in

a view-driven manner as the user navigates the scene. Using 24 processors, we

render scenes with hundreds of thousands of polygons with up to 100 lights at 1-2

frames per second, achieving performance improvements from 10× to 30× over a

traditional ray tracer.

3.1 Local Illumination Environments

A local illumination environment (LIE) consists of a bounding box (cell) along with

a set of visible lights, each with a (possibly empty) accompanying set of blocking

geometry. LIEs are used to faithfully reproduce the incident radiance on surfaces

bounded by the cell. The set of lights and the set of occluders are taken directly

from the scene geometry.

In the sections to follow, we will refer to lights as being unoccluded, partially

occluded, or fully occluded. We generate LIEs by creating a random point on a

surface, a random point on a light source, and testing the visibility between these

two points. This process repeats until the algorithm is terminated. A light is

unoccluded with respect to the cell associated with the LIE if and only if every

sampled point on a model surface contained within the cell can see every sampled

point on the light. A light is fully occluded with respect to the cell associated with

the LIE iff no sampled point on a model surface contained within the cell can see

any sampled point on the light. Otherwise, a light is partially occluded with respect

28

to the cell associated with the LIE. As discussed in Section 3.1.1 , this approach

to constructing LIEs is an approximation that converges to the correct LIE with

enough samples.

3.1.1 LIE Construction

For optimal performance, local illumination environments should be as simple as

possible. Ideally, the local illumination environment for a cell should include only

lights that affect illumination for surfaces within that cell. Similarly, for each

visible light in a local illumination environment, the associated occluder set should

only include the occluders that actually occlude the light.

Computing this minimal occluder set is potentially expensive. Shaft culling

[HW94] could be used to construct a set of occluders; however, shaft culling is

typically too conservative, including a lot of occluders that are not actually rele-

vant for illumination. Therefore, in our LIE construction, we sample the visibility

between a surface and light to determine occluder lists, as demonstrated by Hart

et al. [HDG99]. This technique is inexpensive and is guaranteed not to add any

lights not seen from the cell nor any occluders not actually blocking a light from

the cell. Sometimes a lot of samples are required to find all the required lights

and occluders. Because of this, some artifacts are visible as LIEs are constructed.

However, over time the LIEs converge to an accurate representation of visibility

and the artifacts disappear.

For interactive walkthroughs LIEs are computed lazily using a view-driven ap-

proach. The LIE constructor picks a point randomly on the image plane and traces

a ray from the eye to the closest visible point on a surface. The LIE constructor

then constructs an LIE or improves an existing LIE for the smallest enclosing oc-

29

Figure 3.2: State diagram for LIE construction. A light within an LIE starts out

in the occluded state. Any blocked shadow rays to the light leave it in the occluded

state. An unblocked shadow ray puts it in the unoccluded state. Once in the

unoccluded state, any unblocked shadow rays leave it in the unoccluded state. A

blocked shadow ray in the unoccluded state moves the light into the final state,

partially occluded. Blocked shadow rays in the partially occluded state cause the

light to remain in this state but add blockers to the light’s blocker list.

30

tree cell for that point. A ray is cast from the point to random points on all the

lights in the scene. If the ray is unobstructed for a particular light and the LIE

does not contain that light, that light is added to the LIE (unoccluded case). If

the ray is obstructed and the LIE does not contain that particular light, the LIE

is not modified (occluded case). If the ray is obstructed but the LIE does contain

that light, the obstructing geometry is added to the set of occluders for that light

(partially occluded case). This algorithm is shown as a state diagram in Figure 3.2.

We demonstrate LIE construction with an example, illustrated in Figures 3.3

and 3.4.

• a) Cast a ray which hits surface G4

• b) Traverse the octree to find the leaf cell containing the surface point.

• c) Obtain the LIE associated with the leaf cell

• d) Cast a shadow ray to light L1. Since the ray is unobstructed, add L1 to

the LIE.

• e) Repeat the process for light L2.

• f) Cast a shadow ray to light L3. This time, the shadow ray is obstructed,

so it is not added to the LIE.

• g) Repeat the process for another surface point.

• h) Find the same leaf cell that contained the previous point.

• i) Cast a shadow ray to light L1. The ray is unobstructed, but light L1 is

already in the LIE, so it is not modified.

31

• j) G2 obstructs a shadow ray to light L2. Since light L2 is in the LIE, G2 is

added to light L2’s blocker list.

• k) Cast a shadow ray to light L3. Again, the shadow ray is obstructed so

light L3 is not added to the LIE.

• l)-p) Repeat the processes for a third surface point. This time, G1 blocks a

shadow ray to light L2, so G1 is also added to L2’s blocker list.

Note that although G1 and G2 block shadow rays to light L3, there is no

blocker list for light L3. A blocker list is only constructed if a light is found to

be visible from some surface point in the cell and this list is empty if the light is

visible from all surface points in the cell. For the very common case where a light

is completely occluded, we can completely eliminate all shading calculations for

this light. This is a key advantage of this algorithm since complete occlusion is

common yet difficult to prove in general.

Different parts of the scene will have different illumination complexities. If

it is determined that the LIE for a certain octree cell has become too complex,

the cell is subdivided. We currently measure complexity as the total number of

occluders in the LIE. The LIEs for the child cells are then generated from scratch.

This allows us to maintain the invariant that only lights that can actually be seen

from a cell are in an LIE and only occluders that occlude a cell’s view of a light

are in its occluder list. Currently we use a fixed maximum depth for the octree

subdivision. We have found that the optimal maximum depth in terms of the

LIE performance/LIE generation tradeoff varies as a function of the scene. For

example, while a maximum depth of six was appropriate for a simple scene with a

few thousand polygons and one light, a value of ten worked better for scenes with

32

Figure 3.3: LIE construction example, part 1.

33

Figure 3.4: LIE construction example, part 2.

34

hundreds of thousands of polygons and dozens of lights.

3.1.2 Shading Using LIEs

When rendering a frame, the ray tracer is used to determine the closest visible

object for each pixel. The appropriate LIE used for shading this point is found

by descending the octree hierarchy. For each partially occluded light in the LIE a

ray is cast from the point to be shaded to a sample point on the light. This ray

is tested for intersection with the list of occluders for that light. If the ray is not

blocked, the incident radiance from the light source is multiplied by the BRDF

and the form factor and added to the exitant radiance. Monte Carlo sampling is

used to integrate the contribution from area light sources. For fully visible lights

in the LIE no visibility computation is required.

LIEs tend to be small resulting in fewer intersection tests than with traditional

ray-tracing acceleration approaches. The simple structure of the occluder lists also

incurs little overhead.

3.2 Masking

In scenes with large lighting complexity, parts of the scene could be illuminated

with several lights that are significantly brighter than the rest of the lights illumi-

nating that portion of the scene. These bright lights “mask” the effect that the

dimmer lights have on the illumination of that region. Thus, the bright lights allow

us to ignore the contributions of the dimmer lights. Ignoring these dim lights lets

us further decrease the computational cost of rendering direct illumination.

We demonstrate this in Figure 3.5. All lights in the environment have been

35

Figure 3.5: a-c) Images of Mosque de Cordoba with only one dim light on in each

image. d) When all lights in the environment are turned on, the shadows cast by

the dimmer lights are not visible.

36

turned off. We turn on one light in each of the first three images. One can see

that the cell marked in blue has several shadows going across it from dim (distant)

lights. However, when all lights are turned on, the energy of the brighter (nearby)

lights is much higher than that of the dimmer lights and thus the brighter lights

mask out the shadows of the dimmer lights. We would like to identify the cases

where bright lights mask dimmer lights and avoid rendering the dim lights in those

regions.

In order to determine exactly which dim lights can be safely ignored we use

the contrast sensitivity function. The contrast sensitivity function, shown in Fig-

ure 3.6, describes the difference in illumination of a feature from its surroundings

necessary for a viewer to “just notice” the feature. Weber’s law [HF86],

�I

I
= k (3.1)

where I is the surrounding intensity in a region and �I is the “just noticeable

difference” from this intensity, specifies that this ratio is a constant over a wide

range of intensities. The value of this constant is about 1-3%.

To use Weber’s law we have to obtain some estimate of the overall energy over

an octree cell. As LIEs are constructed our system keeps track of the minimum

and maximum exitant radiance over a region due to each light and sorts the lights

based on their maximum exitant radiance. We then remove lights from the LIE

starting with the light whose maximum contribution is smallest. We accumulate

the error introduced, and stop removing lights when this error exceeds 2% of the

minimum radiance for all the lights combined.2

2A similar approach is used by Ward [War94], on a per-pixel basis.

37

Figure 3.6: The contrast sensitivity function shows the minimum change in in-

tensity (�I) from the background intensity (I) that is noticeable by the human

visual system. Over a broad range of intensities, this ratio is 0.02, only deviating

in below-moonlight and above-sunlight lighting conditions.

Figures 3.7 and 3.8 show a particular section of the Mosque de Cordoba test

scene. The scene happens to have a large number of relatively dim lights with a row

of bright lights running down the main corridor seen in the picture. The columns

surrounding the corridor cast shadows on the floor due to all the surrounding lights.

However, the brighter lights above the corridor completely mask these shadows so

that they are not visible in the image.

The bottom visualizations in each figure show the cost of rendering each pixel

without and with masking. The generated images at the top of the two figures

are perceptually identical. However, the cost to render the pixels in the corridor is

significantly reduced when using masking as is particularly noticeable on the floor.

The performance difference is shown in Figures 3.10, 3.11, and 3.12. Note that the

difference image and results are for a converged set of LIEs. Non-converged LIEs

would show visibility artifacts unrelated to masking.

38

Figure 3.7: Top: Image of Mosque de Cordoba scene with no masking. Bottom:

Cost to render each pixel without masking (whiter is more expensive).

39

Figure 3.8: Top: Image of Mosque de Cordoba scene with masking. Bottom: Cost

to render each pixel with masking (whiter is more expensive).

40

3.3 System Description

This section describes the overall structure of the system. The system is view-

dependent, but caches data in a view-independent data structure that can later

be reused by view-dependent renderers. It can make use of parallel processing

to accelerate rendering. It also works online and can be used immediately upon

loading the model if the user is willing to tolerate some error.

The system is split into two modules. As the user navigates the scene, the

viewpoint is sent to the LIE constructor. This module continuously computes new

LIEs if needed or refines existing LIEs. The LIE constructor typically runs on a

single computer and communicates changes in the computed LIEs to the shaders

which run on separate computers.

The LIE shaders consist of several parallel renderers that use LIEs to render

the pixels assigned to them. The renderers are not synchronized with the LIE

constructor, so the shaders do not have to wait on the results of LIE construction.

Also, computing any one pixel does not depend on the computation of any other

pixel, so there is no communication among the shaders. The computed pixels are

sent over a local area network where they are assembled into an image.

At startup, the model is distributed to the LIE constructor and the LIE shaders.

A regular grid acceleration structure is constructed and replicated on each system.

This regular grid is used to accelerate both the ray casts needed to construct LIEs

and the primary visibility ray computation used in both the constructor and the

shaders.

41

Renderer

Shading

process 1

process 2

process 3

process n

Local
Illumination

Environment
Construction

synchronous asynchronous

viewing

Local illumination
environments

viewingimage

User

Figure 3.9: System structure. The user navigates on a display computer, sending

camera positions to both the LIE constructor and the LIE shaders. The LIE

shaders partition the image and work synchronously and in parallel to generate a

rendered image to be sent to the display computer. The LIE constructor works

asynchronously to generate LIEs to be used by the shaders.

42

3.4 Results

We tested our algorithm on several scenes. We present results for the following

three scenes that differ in their lighting, materials, and complexity. The Science

Center is a simple scene with 7,000 polygons and one large area light source,

with completely diffuse materials. Bar is a scene with 240,000 polygons and 70

spotlights with mostly diffuse materials and a glossy floor.3 Mosque de Cordoba is

a scene with 980,000 polygons, 100 omnidirectional point light sources, and glossy

columns.4

LIE construction was done on a single dual-processor Pentium-4 PC running

at 1.7 Ghz. LIE shading was done on 10 dual-processor Pentium-4 PCs running

at 1.7 Ghz. A 100 Mbit Ethernet network connects the machines. The LIE con-

structor communicates with the shaders on this network. Rendered pixels are also

transmitted on this network. Both the standard ray tracer and the LIE system

were written in Java and ran on the Sun Java Virtual Machine version 1.3.1.

Before obtaining timing results, the LIE data was precomputed by walking

around the scenes until the LIEs were mostly converged. The Science Center re-

quired only seconds of precomputation, while Bar Carta Blanca required a few

minutes and Mosque de Cordoba required about an hour. Timings are for partic-

ular views within the scenes and are representative of timings obtained for other

views. Timings are in seconds per frame for a 512x512 image and scale linearly

with the number of pixels.

For comparison, Figures 3.10, 3.11, and 3.12 show the performance of a stan-

dard ray tracer, the same ray tracer modified to use Ward’s algorithm for many

3The Bar scene was modeled by Guillermo M. Leal LLaguno.
4The Mosque de Cordoba scene was modeled by Ivan Rossello and Yasemin

Kologlu.

43

lights, and our LIE based ray tracer. Note that all these ray tracers have been

parallelized. The timings shown are for one representative viewpoint within each

scene. The algorithm shows consistent speedups over traditional ray tracing. The

standard ray tracer uses a two-level hierarchical regular grid acceleration structure

whose resolution adapts to the size of the model. As model complexity increases

and shadow-ray costs for the standard ray tracer go up, our speedup increases,

going from 11× for the Science Center to 29× for the more complex Mosque de

Cordoba.

The Science Center scene (Figure 3.10) shows that we can achieve substantial

speedups even in small environments where the cost of traditional shadow rays is

not large. In this scene the performance improvement is mainly due to not having

to cast shadow rays for fully occluded or fully visible lights. This cost savings

can be substantial for scenes with large area lights because of the large number of

shadow rays required.

The Bar scene (Figure 3.11) demonstrates the algorithm’s performance on a

complex scene with many point lights. In this scene, accelerating shadow compu-

tation for the partially occluded regions is more important than in the previous

scene due to the high cost of shadow rays. LIEs are effective at accelerating these

rays. Although this scene contains many lights, masking is not very effective. In

this environment, far away lights tend to be fully occluded and thus incur zero cost

in rendering.

The Mosque de Cordoba scene (Figure 3.12) demonstrates the additional per-

formance improvements that can be obtained by taking advantage of light masking.

The mosque is lit by a row of 10 bright lights in the central aisle, and 90 dimmer

lights to the sides. Light masking is particularly effective in reducing the cost of

44

direct illumination in such a scene in the regions near the bright lights.

These tables break down the performance into three components. The visibility

component is the cost of casting a ray from the eye to the first surface using

a conventional ray tracer. This component is not accelerated by our algorithm.

However, we present it as a point of comparison since the visibility computation

is a lower bound on the time required to render a frame. The next component

is the time spent rendering unoccluded lights. This involves a BRDF evaluation,

a light emission evaluation and a form factor computation for each light. The

final component is time spent rendering partially occluded lights. This involves

intersection testing with the set of occluders in the LIE for each partially occluded

light as well as the emission and BRDF evaluation if the light is determined to be

visible. For area lights, these computations have to be done once for each sample

point on the light.

The table shows the performance breakdown for LIEs without masking enabled.

A significant effect from masking can be seen in the Mosque de Cordoba scene

where enabling masking further decreases the time for rendering partially occluded

lights by about 0.25 seconds.

The breakdown shows that in several cases the cost of performing the direct

lighting computations is the same order of magnitude as the cost of performing the

visibility computation. Thus, the LIE is effective at accelerating direct illumina-

tion. The table also shows that neither the rendering of fully visible lights nor the

rendering of partially occluded lights is a performance bottleneck. Instead, both

have to be further optimized for better performance.

Memory usage for the LIE data structure is not very high. Although it does

have to store a collection of lights and occluders for each octree cell, these are

45

Time comparisons

Method Time Speedup

Standard ray tracer 15.0s 1.0x

Ward method 15.0s 1.0x

LIEs without masking 1.30s 11.5x

LIEs with masking 1.30s 11.5x

Time breakdown

Aspect Time

Visibility 0.35s

Rendering unoccluded lights 0.05s

Rendering partially occluded lights 0.90s

Figure 3.10: Science Center

46

Time comparisons

Method Time Speedup

Standard ray tracer 10.1s 1.0x

Ward method 10.1s 1.0x

LIEs without masking 0.69s 14.6x

LIEs with masking 0.69s 14.6x

Time breakdown

Aspect Time

Visibility 0.48s

Rendering unoccluded lights 0.14s

Rendering partially occluded lights 0.07s

Figure 3.11: Bar

47

Time comparisons

Method Time Speedup

Standard ray tracer 35.0s 1.0x

Ward method 11.5s 3.0x

LIEs without masking 1.45s 24.1x

LIEs with masking 1.20s 29.2x

Time breakdown

Aspect Time

Visibility 0.59s

Rendering unoccluded lights 0.34s

Rendering partially occluded lights 0.52s

Figure 3.12: Mosque de Cordoba

48

merely references to scene geometry and thus take up little space. For the 980,000

triangle Mosque de Cordoba model, 50 megabytes of data were used by the LIE

data structure. This is less than the memory used for the model.

3.5 Conclusions

We have introduced an approach for accelerating direct illumination calculations

using local illumination environments. LIEs spatially cache visibility and radio-

metric information in a scene. This caching allows fast rendering by reducing the

number of shadow rays cast and by decreasing the cost of the shadow rays that

must be cast. LIEs are flexible and can be easily introduced into a ray-tracing

system. We have also shown how perceptual masking can be used in conjunction

with LIEs to reduce the number of shadow ray casts in regions where shadows are

hard to perceive.

We have implemented a system that renders direct illumination at 1-2 fps using

LIEs on a cluster of PCs. Our system demonstrates performance improvements

over conventional ray tracing of 10× to 30×. We believe LIEs can be easily in-

tegrated in other systems to accelerate shadow ray computations for interactive

walkthroughs.

In the following chapter, we will explore in detail the parameters that go into

generating LIEs. This will provide some guidance in generating optimal LIEs, as

well as showing us the limits of their usefulness.

Chapter 4

Local Illumination Environment

Construction

Once constructed, local illumination environments are fast and simple to use. How-

ever, the process of LIE construction can be time-consuming and complex. In this

chapter, we will define the process of LIE construction more formally, explore

different methods of constructing LIEs, and closely analyze the error involved in

construction.

4.1 Definitions

First we will define the concepts of shadow space region and view shadow space

region, as they are fundamental in the construction of LIEs.

Let S be the set of all points on surfaces in the scene and let L be the set of all

points on light sources. We define shadow ray space as S×L, the set of all shadow

rays in the scene. LIE construction consists of sampling shadow ray space to find

light sources and blockers.

49

50

Let us denote the set of all points on surfaces bounded by octree cell i as Si.

Let us further refer to the set of points on the surface of light source j as Lj. Let

G be the set of all geometric objects in the scene. We define B : S × L → G ∪ ⊥
as the function that describes the first geometric object in the scene to block a

ray from a surface point to a point on the light source, with value ⊥ if the ray is

unoccluded. B describes whether a light will be added to an LIE due to a sample

(when B is ⊥) or, if the light is already part of an LIE, which blocker will be added

to the blocker list for the light. We illustrate shadow ray space in Figure 4.1 and

shadow ray space with cells in Figure 4.2.

The collection of sets

{Rijk ⊂ S × L where (s, l) ∈ Rijk iff s ∈ Si, l ∈ Lj, and B(s, l) = k} (4.1)

partitions shadow ray space into shadow ray regions of different sizes. Each region

is the set of surface points in cell i and light j for which k is the first occluder

(or where there is no occlusion if k = ⊥). One sample in each region of non-zero

measure is sufficient and necessary to form a complete set of LIEs. Not sampling

every region leads to erroneous LIEs. Sampling a region more than once is wasted

work.

Let vc(p) ∈ S be the first intersection of a ray constructed from the focal point

of camera c and passing through the point p on the image plane. The collection of

sets

{Rc
ijk ⊂ I×L where (p, l) ∈ Rc

ijk iff vc(p) ∈ Si, l ∈ Lj, and B(vc(p), l) = k} (4.2)

partitions I × L, which we’ll refer to as view shadow ray space and illustrate

in Figure 4.3. One sample in each region of non-zero measure of view shadow ray

space is sufficient and necessary to form a complete set of LIEs for that camera

51

(that is, no incomplete LIEs are visible).

Thus, if we generate one shadow ray in each of these view shadow ray regions,

we will have complete LIEs and have zero error in our generated image. Intu-

itively, each of these regions represents the projection onto the image plane of the

intersection of a cell with the shadow caused by a particular piece of geometry and

a particular light.

A random sampling of view shadow ray space will eventually sample each of

these regions and therefore form a complete set of LIEs. However, random sampling

will sample regions more than once, even though only one sample is required per

region. This is the reason why error reduction via random sampling eventually

levels off.

The number and size of these regions affect the rate of error reduction. The

larger the number of regions, the larger the number of samples that are required

to eliminate all errors. The smaller the regions, the lower the error reduction per

sampled region and the lower the probability that a given region will be found.

52

Figure 4.1: Top: A simple two-dimensional scene with two lights, two occluders,

and a receiving surface; the xi represent points of shadow discontinuities on the

receiving surface. Bottom: The shadow ray space representation of this scene. The

shadow discontinuities partition this space into shadow ray regions that must be

sampled.

53

Figure 4.2: The introduction of cells (Si) further partitions shadow ray space,

requiring more samples.

54

Figure 4.3: View shadow ray space is a reparametrization of shadow ray space.

In this simpler version of the two-dimensional model, we see the view shadow ray

regions generated by one light and two blockers on a receiving surface. The ii

represent points of possible discontinuity either in shading or visible surface.

55

4.2 Testing methodology

This chapter describes several LIE construction experiments we performed. This

section describes the testing methodology we used to evaluate these experiments.

We connected an LIE constructor running on a single processor with an LIE

shader also running on the same processor. We alternated execution of the con-

structor and shader. All construction times take into account only time spent in

the constructor, likewise for shading times.

We chose one representative viewpoint for each scene. We define the error

function as

E = min(
|LLIE − L|

L
, 1.0) (4.3)

where the average is over the pixels in the image, LLIE is the radiance computed

at a pixel by using LIEs, and L is the radiance computed at a pixel by a reference

direct illumination shader. This error function gives us a relative measure of how

far the generated image is from the reference image. The clamping to one ensures

that no single pixel has an overwhelming influence on the total error. This is

particularly important in regions where the reference image is very dark or black

and the LIE-generated image is bright, due to an undiscovered occluder.

Unless otherwise noted, fixed-size cells were used (the leaves of a depth-6 oc-

tree). Image plane sampling was performed using a Halton sequence QMC algo-

rithm, as covered by Glassner [Gla95].

We performed tests on three different scenes:

• Bar. A model of a bar. It contains 235,000 triangles, diffuse and glossy

surfaces, 62 spot lights and 7 omnidirectional point lights. This is the same

56

bar model used in the previous chapter.

• Mosque de Cordoba. A model of the Mosque de Cordoba. It contains

950,000 triangles, diffuse and glossy surfaces, and 145 omnidirectional point

lights. This is a version of the model used in the previous chapter with

greater lighting complexity.

• Grand Central Station. A model of Grand Central Station. It contains

1.65M triangles, diffuse surfaces, 18 omnidirectional point lights and one spot

light.1

4.3 Fixed cell size

One method of dividing the scene into cells is fixed-depth subdivision. An octree

is constructed that bounds the scene and a fixed maximum depth for the tree is

determined a priori. Whenever a surface point is sampled for LIE construction,

we check to see whether a cell of the given fixed depth contains the surface point.

If one does not, then the tree is subdivided until one does. LIEs are then stored

only at the leaves of the tree at the given fixed depth. This gives us a fixed depth

at which LIEs are stored without generating many leaf voxels in empty regions of

space.

We experimented with different maximum depths. A larger depth implies more

subdivision and therefore a smaller cell size at which LIEs are stored. Smaller cell

sizes are desirable because the size of the blocker lists of a converged LIE for a given

cell can be no larger than that of its parent cell, as demonstrated in Figure 4.4,

1The Grand Central Station scene was modeled by Anne Briggs, Dana Getman,
Yasemin Kologlu, and Mike Donikian.

57

Figure 4.4: Child cells are never more complex than their parents. Here we show

a cell with two blockers being subdivided. Each of the child cells ends up with two

or fewer blockers.

Figure 4.5: Child cells require more samples than their parents. Here we show a

parent cell being sampled (top) and the same sampling pattern on its child cells

(bottom). As soon as any sample falls within the blocker on the parent cell, the

whole cell is rendered correctly. We need at least four samples to render the four

child cells correctly.

58

and is frequently smaller. Smaller blocker lists are less expensive to render. On

the other hand, smaller cells require more samples, as shown in Figure 4.5, and

therefore lengthen construction time.

In the following pages we show the construction times and rendering rates for

the three scenes:

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Depth = 4
Depth = 5
Depth = 6
Depth = 7
Depth = 8

1.5e-05

2e-05

2.5e-05

3e-05

3.5e-05

4e-05

4.5e-05

4 5 6 7 8

S
ec

on
ds

 p
er

 r
ay

Depth

Rendering rate vs. tree depth

Rendering time

Figure 4.6: Fixed tree depth (Bar)

The results show that, as cell size decreases, it takes longer to reduce the error

59

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Depth = 4
Depth = 5
Depth = 6
Depth = 7
Depth = 8

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

4 5 6 7 8

S
ec

on
ds

 p
er

 r
ay

Depth

Rendering rate vs. tree depth

Rendering time

Figure 4.7: Fixed tree depth (Grand Central Station)

to a given level but the rendering rate increases as cell size decreases.

For these test scenes, a depth of six seems appropriate, since greater depths do

not yield much improvement either in error or rendering rate. Although this depth

is appropriate for these scenes, it may not necessarily be the correct value to use

in different scenes. This is a drawback with fixed-depth subdivision as different

fixed depths may need to be tried to determine the optimal one for the scene.

60

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Depth = 4
Depth = 5
Depth = 6
Depth = 7
Depth = 8

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

4 5 6 7 8

S
ec

on
ds

 p
er

 r
ay

Depth

Rendering rate vs. tree depth

Rendering time

Figure 4.8: Fixed tree depth (Mosque de Cordoba)

4.4 Adaptive subdivision

Instead of using a fixed cell size, we can subdivide cells as their LIEs become

more complex. This should provide us with small, easy-to-render cells where the

lighting complexity is high. Regions with low lighting complexity should get large,

easy-to-construct cells.

Lights and blockers are added to a cell as in fixed subdivision. When one of

61

the lights in the LIE gets more blockers than a given maximum blocker threshold,

the cell is subdivided. Upon subdivision, the LIE associated with the parent cell is

discarded and the LIEs associated with the child cells are initialized to be empty.

Subdivision is limited to a certain maximum depth, in these tests this depth was

eight.

At first glance, it would appear desirable to propagate the LIE of the parent

cells to the child cells. However, doing so has several problems. If a light is

partially visible in the parent cell, it may not be partially visible in the child

cell. Assuming that it is partially visible would add the light to the child cell and

perhaps unnecessarily add to its rendering time. If a light is fully occluded in

the parent cell, we cannot assume that it is fully occluded in the child cell and

never sample it, because the determination of full occlusion may just be due to

insufficient sampling. Likewise, if a blocker is found in the parent cell’s LIE, it

may not belong in the child cell’s LIE, and if it is not found in the parent cell’s

LIE, it may just be due to insufficient sampling. Because of these problems, we do

not propagate LIE information from parent to child and instead start the child off

with an empty LIE. However, this does mean that error increases initially after a

cell subdivision.

We show here construction times and rendering rates for the three scenes, using

adaptive subdivision of the cells. We measured construction times and rendering

rates for various values for maximum length of the blocker list. We also compared

the error of adaptive subdivision with that of fixed subdivision at depth six.

62

0

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Fixed depth (6)
Fixed depth (8)

Adaptive, max blockers = 5
Adaptive, max blockers = 100
Adaptive, max blockers = 500

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

0 50 100 150 200 250 300 350 400 450 500

S
ec

on
ds

 p
er

 r
ay

Max blockers

Rendering time vs. maximum blockers

Fixed depth (6)
Fixed depth (8)

Adaptive subdivision

Figure 4.9: Adaptive cell subdivision (Bar)

63

0

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Fixed depth (6)
Fixed depth (8)

Adaptive, max blockers = 5
Adaptive, max blockers = 100
Adaptive, max blockers = 500

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

0 50 100 150 200 250 300 350 400 450 500

S
ec

on
ds

 p
er

 r
ay

Max blockers

Rendering time vs. maximum blockers

Fixed depth (6)
Fixed depth (8)

Adaptive subdivision

Figure 4.10: Adaptive cell subdivision (Grand Central Station)

64

0

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Fixed depth (6)
Fixed depth (8)

Adaptive, max blockers = 5
Adaptive, max blockers = 100
Adaptive, max blockers = 500

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

0 50 100 150 200 250 300 350 400 450 500

S
ec

on
ds

 p
er

 r
ay

Max blockers

Rendering time vs. maximum blockers

Fixed depth (6)
Fixed depth (8)

Adaptive subdivision

Figure 4.11: Adaptive cell subdivision (Mosque de Cordoba)

65

In general, given the same amount of time spent sampling, using a smaller

blocker list threshold will produce more error than using a larger blocker list thresh-

old. Small thresholds cause more frequent subdivisions, leading to smaller cell sizes

and, as we saw in the previous section, smaller cells have greater error. However,

smaller blocker list thresholds render at a faster rate than larger ones since the

rendering rate is linear with the maximum size of the blocker list.

It is interesting to note that the error with adaptive cell subdivision does not

decrease monotonically and is far noisier than the error associated with fixed sub-

division. This is due to discarding the LIE upon subdivision. When a cell is

subdivided, the children start with empty LIEs. This is equivalent to assuming all

the lights are completely occluded. This assumption can have considerably higher

error than the LIE associated with the parent.

In order to reduce error as quickly as possible in these scenes, it is almost

always best to use a fixed depth of six. A fixed depth of eight produces the

greatest amount of error. Adaptive subdivision with a maximum depth of eight

tends to fall in between these two.

A fixed depth of eight or a small blocker list threshold will always give you

the best rendering performance. In a smaller scene like the Bar, the performance

difference between a fixed depth of six and a fixed depth of eight or a small blocker

list threshold is negligible. In the other two larger scenes, however, the performance

difference may be well worth tolerating a longer convergence time.

Ultimately, the subdivision approach to use depends on the scene being ren-

dered. In the Bar scene, the best choice is a fixed depth of six. It produces less

error than either a fixed depth of eight or adaptive subdivision. In addition, the

difference in rendering performance is negligible.

66

In the Grand Central Station scene, the best choice is adaptive subdivision with

a small blocker list threshold. It produces significantly less error than a fixed depth

of eight while providing the same rendering performance, substantially better than

a fixed depth of six.

In the Mosque de Cordoba scene, the best choice is a fixed depth of eight. It

ultimately has less error than adaptive subdivision and has substantially better

rendering performance than a fixed depth of six subdivision.

In general, the more complex the scene, the greater the subdivision depth

required for optimal rendering performance. When rendering very complex scenes,

adaptive subdivision can sometimes help in reducing the amount of error more

quickly than fixed depth approaches. However, the fact that a lot of sample data is

thrown away as parent cells are subdivided into child cells can hurt the convergence

rate of adaptive subdivision.

4.5 Quasi-Monte Carlo sampling

Straightforward random sampling of shadow ray space can lead to clusters of sam-

ples, where some areas have too many samples and some too few. Quasi-Monte

Carlo (QMC) sampling can provide low-discrepancy, meaning that samples are

guaranteed to be well distributed over the domain. This can help us get our req-

uisite one sample per shadow ray region more quickly.

We compared a linear congruential random number generator, with a QMC

random number generator based on a Halton sequence with bases 2 and 3. These

were used to generate samples in view shadow ray space. The results are shown in

Figure 4.12.

67

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

10 20 30 40 50 60 70 80 90 100 110

E
rr

or

Seconds

Construction error vs. time

Random
QMC

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Random
QMC

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

10 20 30 40 50 60 70 80 90 100 110

E
rr

or

Seconds

Construction error vs. time

Random
QMC

Figure 4.12: QMC vs. Random sampling on the three scenes. Top: Bar. Middle:

Grand Central Station. Bottom: Mosque de Cordoba.

68

QMC sampling provides a small but definite reduction in error. Although

the Halton sequence can be a bit more expensive to generate than conventional

number random generation methods, the results seem to indicate it is worth using.

Additional gains could be obtained by using less expensive QMC sequences.

4.6 Regular sampling

Instead of randomly sampling view shadow ray space, we can regularly sample it.

We do this by subdividing view shadow ray space into fixed size sections and taking

one sample at a fixed location in each section. One advantage of this approach

is that once all samples have been taken for a particular viewpoint, one can stop

sampling. On the other hand, it is not clear how to proceed once all samples have

been taken if the error has not been driven down to zero.

In these tests, we have regularly sampled the image plane and light sources

for the three scenes. The sampling was done at the rendering resolution, at one-

quarter the rendering resolution, and at one-sixteenth the rendering resolution.

Samples and rendering were done at the center of pixels. Although sampling at

the rendering resolution is as expensive as conventional ray tracing when generating

a single image, the resulting LIEs may be reused from frame to frame if the camera

moves. We show the results in Figure 4.13.

For all resolutions, we get a roughly linear reduction in error as all the pixels

are sampled. This will vary from a linear reduction if portions of the image are

well represented by empty LIEs, which are rendered as black pixels. For example,

for a viewpoint where the top half of the image is completely black and the bottom

half is well illuminated, the error will start off at about one-half, stay constant for

69

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Sampling resolution = rendering resolution
Sampling resolution = 1/4 rendering resolution

Sampling resolution = 1/16 rendering resolution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Sampling resolution = rendering resolution
Sampling resolution = 1/4 rendering resolution

Sampling resolution = 1/16 rendering resolution

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Sampling resolution = rendering resolution
Sampling resolution = 1/4 rendering resolution

Sampling resolution = 1/16 rendering resolution

Figure 4.13: Regular sampling on the three scenes. Top: Bar. Middle: Grand

Central Station. Bottom: Mosque de Cordoba.

70

some time, and then start decreasing when the regular sampling gets to the lower

half of the image.

When sampling at one-quarter and one-sixteenth the rendering resolution, error

levels off at a non-zero value once all samples have been taken. This error threshold

is higher for lower sampling resolutions.

4.7 Three-state LIEs

While small lists of blockers can outperform conventional acceleration structures

(due to little overhead), larger lists can significantly underperform them.2 A

blocker list should be limited in size and exceeding that size should trigger the

use of a conventional acceleration structure.

One extreme form of this method is three-state LIEs. A three-state LIE behaves

like a conventional LIE except that a conventional acceleration structure is used if

there would be any blockers in the list for a given light. Lights in a three-state LIE

do not need a blocker list. Instead they are in one of three states: fully occluded,

partially occluded without a blocker list, or fully visible. Fully occluded lights are

ignored. Fully visible lights are shaded without a visibility test. Partially occluded

lights are shaded with a visibility test from a conventional acceleration structure,

as in a regular ray tracer.

Three-state LIEs should take less time to construct than LIEs with blocker lists

because there is no need to find each blocker in the list. A three-state LIE has at

most two shadow space regions per light within each cell, one or zero unoccluded

regions and one or zero occluded regions. In addition, three-state LIEs should use

2Conventional acceleration structures are are hierarchical and hence exhibit
sub-linear performance.

71

less memory, since lists of blockers do not need to be stored. However, three-state

LIEs should also not render as quickly, since a conventional acceleration structure

is used instead of a short blocker list. In some cases, where the blocker list would

have been long, three-state LIEs will render more quickly than blocker list LIEs.

Such a case is shown in Figure 4.15.

We show in Figures 4.14, 4.15 and 4.16 the construction times and rendering

rates for three-state LIEs and compare the approach to the use of blocker lists and

fixed-depth subdivision at a depth of six. 3

Construction error is significantly reduced by using three-state LIEs. The ren-

dering times do increase in the case of the bar scene. In the case of the grand central

scene, rendering times are actually lower for three-state LIEs than for blocker list

LIEs, particularly for large cell sizes. This is due to blocker lists being slower than

conventional acceleration structures when the list is long.

As the maximum depth of the tree increases and cell sizes become smaller, both

the construction time and the rendering rate of three-state LIEs approach that of

blocker list LIEs. With smaller cells, the size of the shadow ray regions, and hence

construction time, is more influenced by the size of the cell than by the size of

regions inside the cell. As cells become smaller, more of them become either fully

occluded or fully unoccluded to the light sources. In these two cases, the rendering

performance of three-state LIEs is equivalent to blocker-list LIEs. Three-state

LIEs only have worse rendering performance than blocker-list LIEs when lights are

partially occluded and the list of geometric blockers is more expensive to traverse

than a conventional acceleration structure.

3We chose a depth of six because it provides a reasonable balance between
convergence rate and rendering speed.

72

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Depth = 4
Depth = 5
Depth = 6
Depth = 7
Depth = 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Depth = 4
Depth = 5
Depth = 6
Depth = 7
Depth = 8

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

7e-05

8e-05

9e-05

4 5 6 7 8

S
ec

on
ds

 p
er

 r
ay

Depth

Rendering rate vs. tree depth

Blocker list
Three-state

Figure 4.14: Blocker list vs. three-state LIEs on the Bar scene. Top: Construction

time for blocker list LIEs. Middle: Construction time for three-state LIEs. Bottom:

Rendering time for blocker list LIEs and three-state LIEs.

73

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Depth = 4
Depth = 5
Depth = 6
Depth = 7
Depth = 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Depth = 4
Depth = 5
Depth = 6
Depth = 7
Depth = 8

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

4 5 6 7 8

S
ec

on
ds

 p
er

 r
ay

Depth

Rendering rate vs. tree depth

Blocker list
Three-state

Figure 4.15: Blocker list vs. three-state LIEs on the Grand Central Station scene.

Top: Construction time for blocker list LIEs. Middle: Construction time for three-

state LIEs. Bottom: Rendering time for blocker list LIEs and three-state LIEs.

74

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Depth = 4
Depth = 5
Depth = 6
Depth = 7
Depth = 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100

E
rr

or

Seconds

Construction error vs. time

Depth = 4
Depth = 5
Depth = 6
Depth = 7
Depth = 8

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

4 5 6 7 8

S
ec

on
ds

 p
er

 r
ay

Depth

Rendering rate vs. tree depth

Blocker list
Three-state

Figure 4.16: Blocker list vs. three-state LIEs on the Mosque de Cordoba scene.

Top: Construction time for blocker list LIEs. Middle: Construction time for three-

state LIEs. Bottom: Rendering time for blocker list LIEs and three-state LIEs.

75

4.8 Error analysis

In our experiments, the error curve has had a consistent shape, initially decreasing

quickly, but later leveling off. In this section, we will explore the reason for this

shape by constructing a simplified model of the LIE construction process and

examining its behavior.

To simplify the analysis, we will assume that blockers are added to the blocker

list as they are found, instead of waiting until visibility to a light has been proven.

Let the size of a region in view shadow ray space be defined by s(Ix, Ly) =

s(Ix)× s(Ly), where s(I) = 1 and s(L) = 1. Let U(t) be the sum of the size of all

unsampled regions in view shadow ray space after t samples have been taken. U(t)

is a reasonable error measure since it is equal to one when no regions have been

sampled and the generated image is completely erroneous, zero when all regions

have been sampled and the image is completely correct, and each decrease in U

usually leads to the removal of some visible artifact in the image, the larger the

difference, the greater the correction.

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

(1
-s

)^
(t

-1
)

t

Expected error for different average region size

s=0.001
s=0.0001
s=1e-05
s=1e-06

Figure 4.17: (1− s)t, for some values of s

76

which is illustrated in Figure 4.17. This matches the shape of the error curves

we’re seeing.

0

0.2

0.4

0.6

0.8

1

1e-08 1e-07 1e-06 1e-05 0.0001 0.001

(1
-s

)^
t

s

Probability of a region not being sampled

t=1000
t=10000

t=100000
t=1e+06
t=1e+07
t=1e+08

Figure 4.18: (1− s)t, for some values of t

The expected value of U(t) is simply a sum over all the regions of the region’s

size (denoted by s(R)) times the probabiplity that the region has not been sampled.

The probability that a region R has not been previously sampled after taking t

samples is (1− s(R))t. Thus,

E(U(t)) =
∑

R

s(R)(1− s(R))t (4.4)

If instead of summing over the regions, we sum over sizes,

E(U(t)) =
∑

s

n(s)s(1− s)t (4.5)

where n(s) is the number of regions with a given size. If we assume a single region

size s, this turns into

E(U(t)) = s(1−s)t

s

E(U(t)) = (1− s)t (4.6)

77

0

200

400

600

800

1000

n(
s)

 x
 s

s

Region size distribution

Maximum depth = 4
Maximum depth = 5
Maximum depth = 6
Maximum depth = 7

0

200

400

600

800

1000

n(
s)

 x
 s

s

Region size distribution

Maximum depth = 4
Maximum depth = 5
Maximum depth = 6
Maximum depth = 7

0

200

400

600

800

1000

n(
s)

 x
 s

s

Region size distribution

Maximum depth = 4
Maximum depth = 5
Maximum depth = 6
Maximum depth = 7

Figure 4.19: Number of features times feature size (n(s)s) for the three scenes.

Top: Bar. Middle: Grand Central Station. Bottom: Mosque de Cordoba.

78

The regions are not, however, uniform in size. The distribution of n(s)s is

shown in Figure 4.19 for the three scenes. These plots were obtained by a very

fine regular sampling of view shadow ray space. The plots of n(s)s show us that

complex environments with many lights tend to have a large number of small

regions. The plots also show that, as depth increases and cell size decreases, we

get more smaller regions.

Since E(U(t)) =
∑

s n(s)s(1− s)t, if we overlay a plot of (1− s)t (Figure 4.18)

with plots of n(s)s for each model (Figure 4.19), we can get an idea of the expected

error for a given number of samples and a given model. The (1 − s)t term tells

us that a very large number of samples are required to find small regions (s is

small). This term can be viewed as a filter on region sizes. For any given number

of samples t, all region sizes to the left of the inflection point (on the plots of n(s)s)

are unlikely to be sampled, where those to the right are likely to be sampled. As

can be seen from Figure 4.19, on a model like Mosque de Cordoba, even ten million

samples can leave us with some error.

4.9 Future Work

There are several other approaches that could be taken to construct LIEs. So

far, we have described view driven approaches. However, there are several offline

techniques that could be used to generate LIEs, to be later used by online shaders.

One such offline technique would be to generate LIEs based on sampling from

the point of view of the light sources. For each light source, a set of rays would be

generated in a given set of directions. The first surface that a ray hits would mark

this light as visible in its LIE. Unlike conventional visibility rays, this ray would

79

then continue through the first surface, hitting additional surfaces. Any surfaces

hit after the first surface would mark this light as not visible in their LIEs. If

a light is marked as not visible with respect to an LIE, the blocker causing that

mark is recorded in the LIE. A light would be considered fully visible with respect

to a particular cell iff all marks were visible. If the light does not have any visible

marks, then the light is considered fully occluded. Otherwise, the light is partially

visible and the blocker list is used for shading.

This approach differs from the view-driven LIE generation approach in the

following ways:

• Rays are generated from the lights, not the eye.

• It can be used offline or online.

• Some significant amount of work may be done in areas never seen by the

viewer.

• The sampling resolution required is unclear if the LIE generation is performed

offline.

Another offline approach that could be used is surface-driven LIE generation.

Instead of iterating over points on the image plane or light sources, iteration oc-

curs over surfaces. This works exactly as view-driven LIE generation, except that

instead of choosing surface points based on rays from the eye through the image

plane, a large set of surface points covering all the surfaces in the environment is

chosen a priori.

The advantage of this approach is that it can be performed offline, since no

camera position is needed.

80

One disadvantage of this approach is that, since no camera position is given,

it is unclear how dense the samples have to be in order to not have artifacts. The

lack of camera position also means that a significant amount of work may be done

in areas not visible to the viewer.

The approaches discussed so far have been conservative about adding lights

and blockers. A light is never added to an LIE unless it can be proven that a

surface point within the LIE can see that light. A blocker is never added to an

LIE unless it can be proven that it does block a partially visible light from being

seen by some surface within the LIE region. Although this approach allows us to

construct small LIEs that render quickly, it prevents us from reducing artifacts by

inserting lights or blockers that we suspect, but have not proven, affect the LIE.

There are a few “non-conservative” techniques that could be tried.

One such technique is flood filling. If a light has been proven visible in a cell,

it is likely to be visible in adjacent cells. We could add this light to the LIEs in

adjacent cells. However, this would lead to errors in cells where the light was not

in fact visible. Therefore, the lights would have to be removed after some time if

they were not proven visible.

A similar approach could be taken with blockers. If a blocker is found in the LIE

of a cell, it could be added to adjacent cells. The difference in this case, however,

is that a blocker added to an LIE incorrectly cannot cause rendering errors, just

reduce performance. This is due to the fact that blockers in the blocker list are

evaluated for occlusion at the point being rendered.

Similar to flood filling, inheritance propagates lights and blockers to cells where

they have not been proven to affect the LIE. However, this works at the subdivision

step. When an LIE cell is deemed to be too complex, it is subdivided. The child

81

cells could inherit the lights and blockers of the parent.

Both flood filling and inheritance have significant problems. While they would

probably reduce errors caused by incorrect LIEs, the performance cost of rendering

large LIEs could be high.

4.10 Conclusion

In this chapter, we’ve more closely analyzed the process of LIE construction. We’ve

explored several LIE parameters and variants on the construction process.

We considered the use of fixed-depth cell subdivision and showed how the er-

ror and rendering rate changes with varying depth. We also found a reasonable

maximum depth of six works well for the variety of scenes we tested.

We looked at the use of adaptive subdivision of the octree cells. We showed

problems associated with subdivision, primarily that of throwing away sample data.

We also showed the varying construction error and rendering rates associated with

different subdivision threshold criteria. We determined that adaptive subdivision

is most likely to be helpful in very complex environments where a high level of cell

subdivision is required.

We also compared the use of Quasi-Monte Carlo sampling with random sam-

pling and determined that, although the individual samples obtained are more

expensive with QMC sampling than with random sampling, QMC sampling leads

to a noticeable reduction in error.

We looked at the use of regular sampling as opposed to random sampling for

LIE construction. Although regular sampling gave us a fixed number of samples

for a particular view point, we found significant error if the sampling resolution

82

did not approach the rendering resolution.

We explored the use of three-state LIEs instead of blocker lists. We found

that although construction error is considerably reduced with three-state LIEs,

rendering time does increase significantly. We also noted that as cell size decreases,

the differences between three-state and blocker list-based LIEs diminish.

Finally, we modeled the LIE construction process to explore the error curve

associated with random sampling for LIE construction. We found that models

with a large number of very small shadow space regions can take a very long time

to reduce error below a certain level. We also measured the size distribution of

shadow space regions in the different models and found a large number of small

shadow space regions, especially in the more complex models. We also found that

increased subdivision of cells increased the number of small regions, explaining

why larger subdivision depths have larger error.

We found that LIEs can be a very efficient rendering method for medium-sized

scenes of a few hundreds of thousands of rendering primitives and a few dozen

lights, especially considering that it is an object-space caching method that can

reuse information gathered from different viewpoints.

However, if zero error is required, or the scenes are very large, the error asso-

ciated with LIE construction can be unacceptable. In the next chapter, we will

explore methods that, although they do not render as quickly as LIEs for medium-

sized scenes, can handle very large scenes well.

Chapter 5

Hierarchical Light Clusters

In this chapter, we introduce efficient approaches for evaluating the effect of large

numbers of light sources. The techniques center around the concept of “Hierarchi-

cal Light Clustering”1.

We first explain the concepts behind hierarchical light clustering. We define

light clusters and how to simulate them with a single representative light. We

then show how to build a hierarchy of such clusters. We explain the concept of a

“tree cut” as a locally valid representation for illumination. We then discuss three

algorithms built on these concepts.

This first algorithm uses dense sampling and generates high quality images,

but offers only modest speed improvements over conventional ray tracers on scenes

with a few hundred light sources. For this reason, we introduce a modification to

the algorithm which samples the “tree cuts”. We then develop two algorithms

to reconstruct shading from sparse samples. The first is a simple interpolation

technique which is quite fast, but blurs shadow boundaries. The second technique

1This is work done in collaboration with Dr. Bruce Walter, Mike Donikian,
Prof. Kavita Bala, and Prof. Donald P. Greenberg.

83

84

is not as fast, but accurately captures illumination discontinuities.

We then define issues involved in building the system to support these algo-

rithms, particularly the sampling and reconstruction approach, and demonstrate

the parallel computer system used. We describe how to provide sample feedback

so that samples can be placed at the locations where they can be the most ben-

eficial. We also discuss how to compress samples, since the thousands of samples

needed would otherwise occupy too much memory. We describe how to find nearby

samples when using the sampling and reconstruction approach.

Finally, we show results for these algorithms, comparing their performance with

each other and to conventional direct lighting techniques.

5.1 Concepts

In this section we introduce the basic concepts and tools used in our adaptive

clustering approach.

The light LS reflected by a surface from direct illumination by a set of non-

directional light sources S is the sum of the contributions from each light. The

contribution of an individual point light i is the product of four factors: the sur-

face’s BRDF fr,i (Bidirectional Reflectance Distribution Function), the geometric

factor Gi, the visibility Vi, and the intensity Ii of the light.

LS(x, e) =
∑
i∈S

fr,i(x, e) Gi(x) Vi(x) Ii (5.1)

where x is the surface point and e is the position of the observer.

We will be initially concerned with computing this equation at a particular

point on a surface and from a fixed viewpoint. The factors then depend only on

85

the characteristics of the lights and we abbreviate Equation 5.1 as

LS =
∑
i∈S

fr,i Gi Vi Ii (5.2)

The cost of evaluating this equation is linear in the number of lights. Although

we express the equation only in terms of light indices, it is important to note that

the BRDF values, geometric factors, and visibilities also depend on the relative

position and orientation of the illuminated surface and viewer position and thus

must be recomputed when these change. Visibility of a point light is either zero

or one and is evaluated using shadow rays in our system. Intensities are assumed

constant per light.

Figure 5.1: Terms used in geometry factors.

We use two types of lights, omnidirectional and oriented. Omnidirectional

lights are point sources that are equally bright in all directions. Oriented lights are

86

also point sources but have an orientation and a cosine falloff from that orientation.

Oriented lights are used to simulate area lights. We use Gi, the geometric factor 2,

to capture the orientation of the surface as well as the attenuation with distance.

For oriented lights, the Gi term also captures the cosine falloff. The geometry

factors for the two types of lights are shown below and illustrated in Figure 5.1.

We define n̂p as the normal at the point being illuminated, ωi is the direction

towards the light, di is the distance to the light, and for oriented lights, n̂i is

normal at the light.

Gi = max(0, n̂p · ωi)/di
2 for Omni lights

max(0, n̂p · ωi) max(0, −n̂i · ωi)/di
2 for Oriented lights

(5.3)

5.1.1 Light Clusters

In order to make the cost complexity sub-linear in the number of lights, we need a

way to efficiently approximate the contribution of groups of lights without evaluat-

ing all the lights individually. Let us define a cluster C to be a subset of the lights.

We can quickly approximate the contribution of a cluster LC by choosing a repre-

sentative light for that cluster and using the BRDF, geometric factor and visibility

values evaluated at the representative light for the entire cluster as follows:

LC =
∑
i∈C

[fr,i Gi Vi Ii] ≈ fr,j Gj Vj

∑
i∈C

Ii (5.4)

where j ∈ C is the cluster’s representative light and Ii is a constant per light,

and thus its sum can be precomputed and stored with the cluster as the cluster

intensity IC. We will refer to Equation 5.4 as the cluster approximation. A simple

example of such clustering is shown in Figure 5.2.

2We use the term geometric factor instead of form factor because it is more
appropriate for point light sources.

87

Figure 5.2: Light clustering in a simple scene with four point lights. In a), we

illustrate a simple scene with four point lights. In b), one pair of point lights has

been clustered into a single light. c) and d) show renderings of these two scenes

respectively. In e) we have computed the absolute value of the difference between

the images in the middle row (abs(c− d)) at each pixel and scaled the result by a

factor of two to highlight the differences. We see that large parts of the difference

image are dark, which implies very little difference between the images. In f), we

use the same difference image, this time dividing by the image brightness at each

pixel (abs(c− d)/d) to take into account the reduced sensitivity to error in bright

regions.

88

Clustering allows us to estimate the contribution of an entire set of lights for

the cost of just a single light evaluation. It also introduces some error which may

or may not be acceptable depending on the local circumstances. Clustering is most

effective when the BRDF, geometry, and visibility factors (as evaluated from the

surface point and viewer orientation we are trying to render) vary little within

the cluster or when the total contribution of the cluster is small compared to the

rest of the lights. We would like to partition the lights into a small a set of large

clusters because our rendering cost is proportional to the number of clusters. At

the same time, we would like to create a large set of small clusters because small

clusters will have less variation in illumination and therefore introduce less error.

The challenge lies in finding a balance between these two goals.

5.1.2 Cluster Hierarchy Tree

To work effectively, our clustering scheme needs to be locally adaptive. No single

partitioning of the lights into clusters is likely to work well over the entire image,

but dynamically finding a new cluster partitioning for each point could easily

prove prohibitively expensive. To solve this problem we use a two-step approach.

First we build a global cluster hierarchy to generate a set of possible clusters to

use. Second, we compute locally adaptive subsets (called cuts) of these possible

clusters at each point to be rendered. We describe the global cluster hierarchy in

this section and discuss cuts in Section 5.1.3.

A cluster hierarchy is a tree where the leaves are the individual lights and the

interior nodes are light clusters that contain exactly the lights below them in the

tree. We build the tree in a bottom-up fashion, starting at the leaves and building

to the root. First we create a leaf node for each light in the scene. We then find

89

the two nodes with no parents closest to each other and create a new node with

those two nodes as its children. This new node represents a cluster that is the

union of the two clusters represented by its child nodes. This process of finding

the two closest nodes and creating a new node from them is repeated until only

one node is left with no parent, the root node.

In order to find the two closest nodes, we have to define a distance metric for

nodes. The distance between a pair of leaf nodes is simply the cartesian distance

between the two lights they represent. More generally, the distance between two

nodes is the maximum distance between two points on the bounding spheres of

the clusters they represent.

Each tree node (i.e. cluster) stores the total intensity of all the lights it repre-

sents, and points to its representative light and its children in the tree. To make

our algorithms more efficient, we require that the representative light for a cluster

have the same position and orientation as the representative light for one of its

children. In particular, it shares the position and orientation of the representative

light which is closer to the power-weighted centroid of the parent cluster. The

representative light for an individual light is itself, naturally.

The above descriptions refer to point lights. However, the algorithm can easily

be extended to area lights by approximating each area light as a set of oriented

point lights. The number of point lights required to accurately represent an area

light varies considerably depending on the local configuration. Surface locations

near the area light or in its penumbra may require many point lights for an adequate

result while further locations may require few. We can automatically handle this

by integrating the area lights into our cluster tree, as follows.

For each area light, we generate a cluster subtree that progressively divides

90

the light into smaller subregions up to some maximum subdivision. We choose a

point within each subregion to act as its representative point light and compute an

intensity proportional to the area of the subregion. Cluster building then proceeds

as described above.

For static environments, the cluster hierarchy is only computed once per scene

and then can be reused at each pixel in finding an appropriate light clustering.

When we decide which clusters to use to render a point (as described in the next

section), only the clusters from this hierarchy are used.

5.1.3 Finding a Cut

A cut is a subset of the nodes in the cluster hierarchy tree. Cuts provide us

with local adaptation, allowing us to choose which nodes from the previously built

cluster hiearchy tree are appropriate for the point being rendered. More formally,

a cut through the tree is a set of nodes such that every path from the root of

the tree to a leaf will contain exactly one node from the cut. Each tree cut thus

corresponds to a valid partitioning of the lights into clusters. An example cluster

hierarchy and three different cuts are shown in Figure 5.3.

The algorithm for cut generation is illustrated in Figure 5.4. We have three

types of nodes in the tree. Cut candidate nodes (shaded red) are nodes that have

not yet been inspected but will be inspected before the final cut is determined.

Cut nodes (shaded blue) are nodes that have been determined to be part of the

final cut. Other nodes are unshaded.

We begin by marking the root node red, thus making it a cut candidate. The

algorithm proceeds by picking some red node and determining whether it should

be part of the final cut. We determine this by estimating (as described in the

91

Figure 5.3: Cluster hierarchy tree and three example cuts for a simple scene with

four lights. The cluster hierarchy is shown on the top along with the representative

lights and cluster intensities for each node. The leaf nodes correspond to the

individual lights while upper nodes correspond to progressively larger light clusters.

The three cuts shown each represent a different partitioning of the lights into

clusters (Note the orange cut is the same clustering as illustrated in Figure 5.2).

Above each cut are highlighted in color the image regions where that clustering is

virtually indistinguishable from the exact solution.

92

Figure 5.4: Finding a cut. Blue nodes are nodes in the final cut. Red nodes are

nodes to be considered for inclusion in the cut. The algorithm begins with the

root marked red. At each step, we select a red node (denoted by a square around

the node) and decide whether it is acceptable for inclusion in the tree cut. If it is,

it is marked blue. Otherwise, its children (if any) are marked red. The algorithm

ends when there are no more red nodes. The blue nodes then denote our tree cut.

93

next section) the illumination of the cluster represented by the node and checking

whether that falls below our threshold (e.g.,2% of the total illumination at the

point). If the node illumination does fall below threshold or if the node is a leaf

node, then it is considered part of the final cut and marked blue in the figure. If

it does not fall below threshold and is not a leaf, then the node is removed from

the set of red nodes and replaced with its children. Whether the node was marked

blue or not, the algorithm iterates by choosing another red node and taking the

same steps. The algorithm terminates when there are no red nodes left.

In order to decide whether a cluster’s error is below our threshold, we need an

estimate of the total illumination. We estimate this as the sum of the estimated

contribution of all red and blue nodes. Whenever a red node is unmarked and its

two children marked red, this estimate is updated.

If a node is not a leaf and its illumination is greater than threshold, we have to

eventually compute the illumination of its children to determine whether they are

above threshold. This means computing BRDF, geometry, and visibility factors

for the representative lights of both of its children. However, we can reuse the

factors already computed for the parent for one of its children because we required

that the representative light of a cluster always be in the same position as the

representative light of one of its children.

Weber’s law (Equation 5.5) specifies that we are less sensitive to error in bright

regions. This means, however, that we are more sensitive to error in dark regions.

This effect can be seen in Figure 5.2f. Although the error close to the light is

reduced compared to Figure 5.2e , the error on the side of the cylinder is magnified.

Because we have a lower error threshold in dark regions, our algorithm can generate

94

excessively large cuts 3 in those areas. For example, if a point receives no light, then

its error threshold will be zero and the cut would eventually be pushed down all the

way to all the leaves resulting in wastefully shooting shadow rays to every single

light. We can prevent this by setting a maximum cut size where cut refinement is

stopped even if we have not found all the nodes in the final cut (there are still red

nodes left)4. We have used a limit of 300 nodes and have found that it does not

have any appreciable effect on image quality.

Although every tree cut corresponds to a valid partitioning of the lights into

clusters, each resulting cut varies considerably in both cost and quality of the

approximated illumination. Our goal for each surface point is to choose the cut

with the least cost that will meet our error and quality criteria. The cost of a cut

is proportional to the number of nodes in the cut, since this corresponds to the

effective number of lights that have to be evaluated. The error, though, is more

complicated to measure.

5.1.4 Error Estimates

Ideally, the errors introduced by our clusters should be imperceptible. Weber’s

law [Bla72]:

�L

L
= k (5.5)

is a standard perceptual metric that says the minimum perceptible change (�L)

in a visual signal (L) is roughly equal to a fixed percentage (k) of the base signal.

Under ideal conditions, humans can detect changes of just under 1%, though in

practice the threshold is often a little higher. In our tests, keeping the allowed

3A large cut is a cut with many nodes.
4Alternatively, a threshold based on the illumination contribution of the nodes

could have been used

95

error for each cluster under 2% to 3% of the total surface illumination produces

images of very high quality with little to no noticeable noise.

We cannot efficiently calculate the exact error we introduce when approximat-

ing a cluster by its representative light, so we compute an estimate of the error. As

explained below, we compute two error estimates using different techniques and

combine them.

The first error estimate is conservative, based on the maximum possible error

introduced by using a cluster. We use bounds on the fr, G, V , and I factors

possible within a cluster. The visibility V , to a point light is always zero or one,

so we use can use one as a trivial upper bound. The light source intensities I are

known a priori.

The geometry factor G depends on the distance between each light and the

point on the surface being evaluated. To obtain a bound on this distance we

store an axis-aligned bounding box with each cluster. The maximum value for

the inverse of the distance squared occurs when the distance is smallest. We find

a lower bound on the distance by finding the minimum possible value of each

component. Thus:

xmin = max(|cx| − sx

2
, 0)

ymin = max(|cy| − sy

2
, 0)

zmin = max(|cz| − sz

2
, 0)

d2
min = xminxmin + yminymin + zminzmin

(
1

d2
)max =

1

d2
min

(5.6)

where c is the vector from the point being shaded to the center of the bounding

96

Figure 5.5: Terms used in bounding distance and cosine. u, v, w form an orthonor-

mal basis with w as the normal at the surface. c is the vector from the surface

point to the center of the cluster bounding box. sx, sy, sz are the dimensions of the

bounding box.

box and s is the size of the bounding box, as illustrated in Figure 5.5.

We obtain an upper bound on the surface cosine term by finding the maximum

component along the direction normal to the surface and the minimum component

97

along directions orthogonal to the surface:

umin = max(|u · c| − (sx|ux|+ sy|uy|+ sz|uz|)/2, 0)

vmin = max(|v · c| − (sx|vx|+ sy|vy|+ sz|vz|)/2, 0)

wmax = |w · c|+ (sx|wx|+ sy|wy|+ sz|wz|)/2

cosmax =
wmax√

u2
min + v2

min + w2
max

(5.7)

where w is the normal to the surface at the point being shaded, and {u, v, w} form

an orthonormal basis. To provide an intuition for this formula, we explain the

derivation of the umin term.

In order to find the minimum u component bounded by the box, we first obtain

the distance to the center of the box, given by |u · c|. In order to obtain the closest

u component bounded by the box, we need to subtract from this distance the u

component of the vector from the center of the box to the point p on the box

that minimizes |u · c| − |u · p|. This point p will be one of the corners. The

eight vectors from the center of the box to the corners of the box are denoted by

p = (±sx,±sy ± sz)/2. We minimize |u · c| − |u · p| by maximizing |u · p| over the

eight possible corner points. This means maximizing each of the terms in the dot

product. Since px = ±sx and sx is positive, the maximum value for uxpx is uxsx if

ux is positive and −uxsx if ux is negative. In other words, the maximum value for

uxpx is sx|ux|. The other terms can be similarly derived.

It is also not immediately obvious that

wmax√
u2

min + v2
min + w2

max

is an upper bound for

w√
u2 + v2 + w2

98

In particular, one might expect

wmax√
u2

min + v2
min + w2

min

instead. The latter is indeed an upper bound, but it is too conservative. We show

here that the former is indeed an upper bound.

wmax ≥ w,w ≥ 0

w2
max ≥ w2

w2
max(u

2 + v2) ≥ w2(u2 + v2)

w2
max(u

2 + v2) + w2
maxw

2 ≥ w2(u2 + v2) + w2
maxw

2

w2
max((u

2 + v2) + w2) ≥ w2((u2 + v2) + w2
max)

w2
max

(u2 + v2) + w2

(u2 + v2) + w2
max

≥ w2

w2
max

(u2 + v2) + w2
max

≥ w2

(u2 + v2) + w2

wmax√
(u2 + v2) + w2

max

≥ w√
(u2 + v2) + w2

and of course, if u ≥ umin and v ≥ vmin then

wmax√
u2

min + v2
min + w2

max

≥ w√
u2 + v2 + w2

Using a technique similar to bounding the cosine term, we can quickly compute

the maximum possible surface BRDF value. The bound is a simple constant for

Lambertian materials. For Phong materials, we can use the same technique we

used to find a bound on the cosine term, replacing the normal to the surface with

the mirror reflection direction. Once the bound on the cosine term is found, the

bound on cosn is trivial. Bounds for other materials could be determined in the

future.

The upper bound-based error estimate can often be too conservative, so we

instead use one-half the value of the conservative bound. However, sometimes

99

the conservative bound is accurate. For this reason, we also use a second error

estimate, based on the representative light. This error estimate consists of actually

evaluating, not bounding, all the terms in the lighting computation. However, we

only do so for the representative light in the cluster, not for every light in the

cluster. Our combined error estimate for a node i is then given by:

Error(i) = max(0.5× Errorbound(i), Errorrep(i)) (5.8)

Errorbound(i) = fr,maxGmaxVmaxImax (5.9)

Errorrep(i) = fr,repGrepVrep

∑
i∈C

Ii (5.10)

The worst case overestimate of a node’s contribution occurs when the repre-

sentative light’s contribution is significantly higher than that of the other lights in

the cluster. This can happen when only the representative light is visible, when

the representative light is particularly close to the surface being rendered, or on

highly glossy surfaces when the representative light falls in the center of the BRDF

lobe and the other lights in the cluster fall outside it. This overestimate can be

arbitrarily high. However, since the error measure includes this overestimate and

nodes whose error estimate is above threshold are not used in the final cut, the

largest amount of error that can be introduced at a node due to overestimation is

the threshold error.

The worst case underestimate of a node’s contribution occurs when the repre-

sentative light’s contribution is significantly lower than that of the other lights in

the cluster. This can happen when only the representative light is occluded, when

other lights in the cluster are much closer to the surface being rendered than the

representative light, or when the representative light falls outside a glossy BRDF

lobe and other lights in the cluster do not. However, because 0.5 times the con-

100

servative upper bound must be below threshold, the largest amount of error that

can be introduced at a node due to underestimation is twice the threshold error.

Ultimately, we’re not guaranteeing an upper bound on the amount of error

introduced by our estimates. Although we bound the amount of error introduced

at any particular node, we do not bound the total. It is possible, for example,

that from a particular point of view a large number of the representative lights are

occluded while the rest of the lights in their clusters are visible, or vice versa. This

type of scenario, however, rarely happens in practice.

5.2 Dense Sampling Algorithm

The first algorithm we describe is aimed at producing high-quality still images.

We refer to it as the “Dense Sampling Algorithm” because it generates tree cuts

at every pixel location (densely). This is in contrast with the other algorithms

we will discuss later which produce samples more sparsely and reconstruct the

illumination between the samples.

The algorithm is illustrated in Figure 5.6. We first cast a ray through a pixel

on the image plane. This determines a point of intersection on a surface. We then

generate a tree cut for this intersection point, as described in the previous section.

The tree cut provides us with a set of clusters for which the cluster approximation

is valid (Equation 5.4). We then compute the total radiance from that point in

the direction of the viewer as the sum of the cluster approximations of the clusters

contained in the cut. This radiance is used as the pixel color and the process is

repeated until every pixel in the image has been computed.

This algorithm can generate images significantly faster than a standard ray

101

Figure 5.6: The dense sampling algorithm. We iterate through every pixel. At

each pixel, we find a cut through the cluster tree. Only the nodes in the cut are

used to compute the final color for the pixel.

102

tracer, as shown in the results section. Moreover, it does so without introducing

noticeable artifacts.

5.3 Sparse Sampling Algorithms

Although the dense sampling algorithm provides substantial speedups over con-

ventional rendering techniques, it is still too expensive for interactive use, even

on a large cluster of PCs. In this section we will introduce a refinement of this

algorithm that trades off some quality for a substantial performance improvement,

allowing interactive walkthroughs on clusters of PCs.

We will describe two sparse sampling and reconstruction approaches. The first

is a weighted sum reconstruction algorithm which is relatively quick but can only be

used for smoothly varying illumination. The second is a tree-based reconstruction

algorithm which can capture sharp shadow boundaries. Both methods rely on

using tree cuts as described previously.

Our approach is to use the tree cuts (hereafter referred to as sample cuts)

described in Section 5.1.3, but instead of generating them at each pixel location,

generate them sparsely at visible surface locations in the scene. We can then

apply reconstruction techniques to compute the shading between the samples. In

general, we can compute these samples sparsely because of spatial coherence in

the lighting. That is, the lighting usually does not change significantly from pixel

to pixel. Storing the samples at surface locations allows us to reuse them from

frame to frame, taking advantage of the temporal coherence when moving through

a static environment.

Although these two approximation algorithms are significantly faster than the

103

dense sampling algorithm, they do suffer from sampling errors. For example, illu-

mination features such as shadows, or specular highlights that are small enough to

fall between samples can be lost. The algorithms are primarily suited for environ-

ments without small shadow details and composed of purely Lambertian materials.

5.3.1 Weighted Sum Reconstruction Algorithm

The weighted sum reconstruction algorithm is similar to the approach by [WRC88],

sparsely sampling irradiance and interpolating between samples. The algorithm

consists of two parts, sample generation and sample reconstruction. We will de-

scribe these two parts sequentially but, as described in Section 5.4.1, they operate

in parallel.

Sample generation is illustrated in Figure 5.7. We first choose a random point

on the image plane and send a ray through it. This ray intersects some point xi

on a surface. This will be our sample location. We then generate a sample cut (as

described previously) at the sample location. The cut describes which light clusters

form a good approximation of the lighting at that sample location. We then use

a modified cluster approximation (Equation 5.4) to compute the irradiance at the

sample point:

EC =
∑
i∈C

[Gi Vi Ii] ≈ Gj Vj

∑
i∈C

Ii (5.11)

The total irradiance at the point is then the sum of EC for all the clusters in the

cut. This irradiance is then stored at the sample. The process is repeated to

generate multiple samples.

Reconstruction is illustrated in Figure 5.8. For each pixel to be shaded, we

shoot a ray through the pixel. This ray intersects some point x on a surface. We

104

Figure 5.7: The sample generation portion of the weighted sum reconstruction

algorithm. Samples are generated by selecting random points on the image plane

(red samples). At each sample location, a sample cut is formed and these nodes

are used to compute irradiance. The irradiance is then stored in the sample for

use in the reconstruction portion of the algorithm (black samples).

105

Figure 5.8: The reconstruction portion of the weighted sum reconstruction algo-

rithm. When computing the color for a pixel, the k nearest samples are used.

Their irradiances are combined using the Epanechnikov kernel. The final radiance

for the pixel is computed by multiplying the irradiance with the diffuse BRDF of

the surface.

106

proceed to collect the k nearest samples to x (previously stored).5 The irradiances

at these samples are combined using the Epanechnikov kernel which has some

beneficial characteristics as described below.

E(x) =
∑

i p(x,xi)Exi∑
i p(x,xi)

(5.12)

p(x, xi) = d(x,xk)2−d(x,xi)
2

d(x,xk)2
(5.13)

Figure 5.9: The Epanechnikov weighting function.

where xi are the samples, in order of distance from x, Exi
is the irradiance

stored in sample xi and d is the Cartesian distance between two points. The

weighting function is illustrated in Figure 5.9.

This kernel assigns higher weights to nearby samples. The farthest sample, xk

is not used in the averaging (it has a weight of 0) and is just used to establish a

radius for the kernel. This means that the kernel is bounded. Furthermore, since

the kernel radius is the distance to the kth nearest sample, the size of the kernel

shrinks with high sample density and grows with low sample density. This means

that if we do have a high sample density, we will not be incorporating distant

5As discussed in Section 5.4.2, the normal of the surface is also taken into
account when finding the k nearest samples.

107

samples into our irradiance estimate. The weighting function also has the nice

property that it goes to zero at the boundaries, so there are no discontinuities at

the boundary of the kernel.

Once we have computed our irradiance estimate E(x), we multiply by the

diffuse surface BRDF to compute the estimated radiance:

L(x) = fr(x)E(x) (5.14)

The radiance is then assigned as the pixel color and the process is repeated

until an entire image is generated.

5.3.2 Tree-Based Reconstruction Algorithm

Irradiance interpolation using the weighted sum method described previously is

appropriate for smoothly varying illumination; however it is not appropriate for

sharp shadow boundaries. Using this approach in such a context results in light

leaks and blurred shadows, as can be seen in the results section.

One approach we could take in order to benefit from the speed of irradiance

interpolation without blurring shadows is the following. Inspect the irradiance

samples for similar values. If the samples have similar values, it is likely that we

are in a region with smoothly varying irradiance and can cheaply interpolate. If

they are substantially different, then we can resort to a conventional ray-tracing

of the pixel in question. This allows us to benefit from interpolation acceleration

in smoothly varying regions yet obtain correct rendering at discontinuities 6.

The problem with this approach is that, in environments with many lights,

6This approach will, however, miss small details that fall completely between
the samples. This can be solved with denser sampling.

108

Figure 5.10: Irradiance discontinuities are common in environments with many

lights.

illumination discontinuities are common and it will therefore be difficult to find

regions where all samples have similar irradiance values. Figure 5.10 illustrates this

problem. In this figure we have constructed a simple environment with eight lights

of equal brightness, two objects that block the lights and some sample locations.

To further simplify the concepts, we ignore the effects of the geometric factors when

computing the “irradiance” in the figure and assume each light has unit intensity;

109

thus the “irradiance” does not vary with distance from the light source and is

simply proportional to the number of lights visible at a point. As can be seen,

even in such a simplified environment, the number of irradiance discontinuities is

quite large. While an interpolation can work in the upper unoccluded regions, it

is hard to find adjacent samples with similar irradiances in the lower part of the

figure, due to the varying amounts of light occlusion.

However, even though the total sample irradiances differ, if we decompose the

contribution by cluster nodes, as seen in Figure 5.11, we see some similarities.

In this figure, we show the irradiance contribution due to each cluster at each

sample. The top node differs for all three sample points, since the total irradiance

(number of lights visible) is not the same, but some of the lower nodes are the

same. Thus, we could interpolate portions of the illumination across samples for

the nodes whose cluster irradiance (EC as defined in Equation 5.11) does not vary

among the samples and fully compute the irradiance due to those nodes where it

does.

Our algorithm would then consist of first storing at each sample the cluster

irradiance at all nodes of the tree. When rendering a pixel, we collect the nearest

samples and compare their trees to each other, node by node starting at the root

node. If a node has the same cluster irradiance for all the samples, that value

is used as the irradiance contribution from that cluster. Otherwise, the node’s

children are compared. If we reach a leaf without finding the same irradiance

at all the samples, the contribution of that light is directly evaluated through a

shadow ray cast.

One problem with this approach is that the geometry factors will vary from

sample to sample, as the distance and orientation to the cluster and the surface

110

Figure 5.11: Even though total irradiances differ among the samples, they share

some common cluster irradiances. A value of 1 in the leaf nodes indicates the

specific light is visible.

111

orientation change. We will therefore rarely get samples with exactly the same

cluster irradiance. Even if we allow for some error, performing simple interpolation

of the cluster irradiance will lead to visual artifacts, particularly if there is surface

normal variation among the samples.

We therefore instead store at each node a relative cluster irradiance, which we

define as

RC(xi) =
EC(xi)

Gj(xi)
∑

i∈C
Ii

(5.15)

where j is the representative light for the cluster and xi is a sample point.

Relative cluster irradiance divides cluster irradiance by the geometry factor

of the representative. Since, at least at a distance, the geometry factor of the

representative light should vary in the same way as the geometry factors for the

lights in the cluster, this should reduce this source of variability. We also divide

the cluster irradiance by the total intensity of the cluster to reduce the dynamic

range of the cluster irradiance and make storage less expensive.

Of course, when rendering a point x that is not a sample point, we actually

want EC(x). This is approximated inexpensively via

EC(x) = RC(xi)Gj(x)
∑
i∈C

Ii (5.16)

where xi is the nearest sample point.

Algorithm

We now describe the “reconstruction cut” algorithm. It consists of two parts,

sample generation and reconstruction. As in the weighted sum reconstruction

algorithm, these parts which will be described operate in parallel.

112

Sample generation is illustrated in Figure 5.12. We first choose a random point

on the image plane and send a ray through it. The ray intersects some point xi

on a surface. This will be our sample location. We then generate a sample cut at

the sample location. At this point, instead of computing the total irradiance at

the sample point, we compute the relative cluster irradiance for every node. This

is a relatively inexpensive operation since we have already computed the cluster

irradiances for the tree when computing the sample cut. This tree of relative

cluster irradiances is compressed, as described in Section 5.4.1, and stored with

the sample point.

Reconstruction is illustrated in Figure 5.13. For each pixel to be shaded, we

shoot a ray through the pixel. This ray intersects some point x on a surface. We

collect the k nearest samples to x and combine them to produce a reconstruction

cut, as described in the following paragraphs. The cluster irradiances at the nodes

of the reconstruction cut are then summed to produce a total irradiance for point

x:

L = fr

∑
i

ECi
(5.17)

The irradiance is then multiplied by the diffuse surface BRDF to compute the

estimated radiance. The radiance is used as the pixel color. The process is repeated

until an entire image is generated.

Finding Cuts

Reconstruction cuts are built in a manner similar to sample cuts, illustrated in

Figure 5.4, with two differences. First, two types of nodes are generated in the

final cut: interpolated nodes and evaluated nodes. Second, we use a different oracle

to determine whether a node belongs in the reconstruction cut.

113

Figure 5.12: The sample generation portion of the tree-based reconstruction algo-

rithm. Samples are generated by selecting random points on the image plane. At

each sample location, a cut is formed. The nodes in the cut are used to compute

a tree of relative cluster irradiances. This tree is then stored in the sample for use

in the reconstruction portion of the algorithm.

114

Figure 5.13: The reconstruction portion of the tree-based reconstruction algorithm.

When computing the color for a pixel, the k nearest samples are used. Their rela-

tive cluster irradiance trees are combined to form a reconstruction cut. The cluster

irradiance of the nodes in the reconstruction cut is computed either through eval-

uation or interpolation. The cluster irradiances are then summed and multiplied

by the diffuse surface BRDF to obtain a radiance value for the pixel.

115

The oracle first tests to see whether a node is an evaluation node. Evaluation

nodes will have their cluster irradiance determined via the modified cluster ap-

proximation (Equation 5.11) i.e. based on the visibility and geometric factors of

the representative light. A node is determined to be an evaluation node if

ICi
Gî < teval (5.18)

where ICi
is the total intensity of the cluster, Gî is the geometric factor of

the cluster’s representative light and teval is 2% of the total irradiance at the

surface. This is similar to the oracle used to determine whether a node is part of

the sample cut in the dense sampling algorithm, except that we do not compute

conservative bounds and we do not evaluate the representative light’s visibility,

both for performance reasons.

If a node is determined to be an evaluation node, then its cluster irradiance is

computed by

ECi
= ICi

GîVî (5.19)

If a node is not an evaluation node, then we check whether it is an interpolation

node. A node is determined to be an interpolation node if

(maxj(Rxj ,i)− avgj(Rxj ,i))

avgj(Rxj ,i)
< tinterp (5.20)

where Rxj ,i is the relative cluster irradiance for node i at sample xj and tinterp

is a parameter to the algorithm (we used 0.05 in our renderings).

If a node is determined to be an interpolation node, then its cluster irradiance

is currently computed by

ECi
= ICi

GîRx0,i (5.21)

116

although a better approximation might be obtained by interpolating the relative

cluster irradiances instead of using the relative cluster irradiance of the nearest

sample.

If a node is neither an evaluation node nor an interpolation node, then it does

not become part of the reconstruction cut and its children are checked. Leaf nodes

that fall in this category are considered to be evaluation nodes.

5.4 System

We have built an interactive parallel system to implement these algorithms. In

this section, we describe this parallel system, along with some details of the im-

plementation.

5.4.1 Parallel System

Although the sampling algorithms are substantially faster than generating sample

cuts at every pixel, they are still not fast enough to provide interactive performance

on a single machine. To provide this performance we use a parallel cluster of

machines as illustrated in Figure 5.14. Samples are generated asynchronously on a

single machine and distributed to the rest of the machines for reconstruction and

shading. The shaders generate pixel colors which are sent to a computer for final

assembly and display. The shaders also generate sample priorities (covered in the

next section) which are sent back to the sampler.

117

Figure 5.14: The interactive system. The shaders operate synchronously to gener-

ate images from the samples. The samplers generate samples asynchronously from

the shaders. The current viewpoint is used to drive sample generation.

5.4.2 Nearest Samples

When reconstructing illumination from samples, we use the k nearest samples to

the surface point in question. However, the k spatially nearest samples may not be

appropriate. We would like to take the surface normal of the sample into account,

so that we do not attempt to use samples that may have a very different surface

normal. We define our distance metric as

d(x, s) = ||x− s||/(n̂x · n̂s) if n̂x · n̂s > 0 (5.22)

∞ otherwise

where n̂x is the normal to the surface at point x and n̂s is the normal to the surface

at sample s. A kd-tree data structure is used to quickly find the k nearest samples.

118

5.4.3 Sample Priorities

When combining samples to reconstruct shading at a point, it is sometimes the

case that the nearby samples are too dissimilar. This can be due to differences

in the irradiances in the case of interpolation or very different sample cuts when

trying to create a reconstruction cut. These dissimilarities can usually be fixed

by a higher sample density near the problem point. We thus create a feedback

mechanism so that the interpolation and reconstruction cut processes can request

additional sampling.

Each shader considers each point it shades as a potential sample location. The

points are assigned a priority and forwarded to the sample generation machine.

The sample generator picks from all the requests randomly with probability pro-

portional to their priority. The priority is based on a simple formula: the size of

the reconstruction cut last evaluated at the pixel times the distance to the nearest

sample. This encourages samples at expensive reconstruction cuts and discourages

samples from clustering together.

Although this mechanism helps guide our sampling to regions that need it, we

can still miss details such as small shadows. For this reason, we also choose some

samples uniformly over the image.

5.4.4 Storage

Storing and transmitting a tree of relative cluster irradiances per sample naively

could get quite expensive, since our trees normally have hundreds of nodes. We

use several mechanisms to reduce sample size.

We only store relative cluster irradiances for nodes on or above the sample

cuts. Values for nodes below the sample cut are assumed to be equal to that of

119

the nearest ancestor of the node within the sample cut.

We encode the tree as two arrays, as illustrated in Figure 5.15. The first array

holds the relative cluster irradiances for every node above the sample cut. The

second array holds the index of the left child of that node into both arrays.

We first assign a “sample cut index” to each node at or above the sample cut.

This is the index of the node into the two arrays. The root is assigned an index of

0. We then proceed down the tree in a depth-first manner, incrementing a counter

used to assign the index. We maintain the property that the right child of a node

is always assigned an index that is one greater than the left child of the node.

We can do this because cuts have the property that either both children are at or

above the cut or neither of them are.

We then place the relative cluster irradiance for each node at its sample cut

index in the relative cluster irradiance array. We also place the sample cut index

for each node’s left child (the right child’s index is implicitly one more than the

left child’s index) into the left child index array at that node’s sample cut index.

Nodes without children at or above the sample cut get a zero for their left child

index entry.

The left child index array is used to reconstruct the tree when needed. Given

that we’re visiting any particular node in the tree, the left child index array tells

us the index into both arrays of its children, if any. This of course requires that

we know the index of the node itself, but this was obtained when we visited its

parent. This approach requires that we visit a node’s parent before we visit the

node, but this is our normal traversal approach anyways.

We also save memory and bandwidth by compacting the relative cluster irra-

diance values. Instead of storing each value as a 4-byte floating point number, we

120

Figure 5.15: Packing a sample cut into two arrays. In the top figure we show a

tree with some random values for relative cluster irradiance and a given cut. We

first place the relative cluster irradiances into the relative cluster irradiance array.

We then create a left child index array which indicates the position in the arrays

of the left child of a given node. In the bottom figure, we show the tree being

reconstructed from the array.

121

store it as a 2-byte fixed point value. This does not introduce much error since we

designed relative cluster irradiance to not have great dynamic range. Left child in-

dices are also stored as a 2-byte quantity. This approach would have to be modified

when dealing with scenes of more than 32,768 lights.

Since relative cluster irradiance will be extrapolated to nodes below the sample

cut anyways, whenever a node above the sample cut has the same value as its

two children at the sample cut, we collapse the sample cut up one level. This

technique is applied until there are no more nodes to collapse. This approach can

be particularly effective in parts of the tree that have many zero values due to

occlusion.

All these techniques combined allow us to compress the relative cluster irradi-

ance trees by a factor of six over naive storage of the entire tree. Sample sizes for

the Grand Central model, for example, are less than 1 KB per sample.

5.5 Results

In this section we describe the results from using these algorithms. We tested our

system on three models each with many lights. These models are described in

Figure 5.16. On the following pages, we show images and timings of each model

run under the following four algorithms:

• Standard Ray Tracer: A conventional ray tracer with a KD-tree-based

acceleration structure is used. The ray tracer does not perform pixel anti-

aliasing, and sends one primary ray for each pixel. The ray tracer evaluates

every light at a point being rendered except for those lights that are not

facing a surface or that are below the horizon of a surface (zero geometry fac-

122

Model Characteristics

Grand Central Station 1,526K triangles

831 point lights

Open environment, most lights are indirectly visi-

ble from most views. Light configuration consists

of a few chandeliers with 80 lights each and two

rows of lights along the ceiling.

Mosque de Cordoba 1,096K triangles

839 point lights

An environment with many cylindrical columns

casting shadows. Lights are arranged in small cir-

cles of a few lights around the top of each column.

A stronger set of lights is placed along the central

corridor.

Residential Kitchen 388K triangles

72 disk area lights

(4,608 generated oriented virtual lights)

Most of the lights here are placed on the ceiling

with some lights located under the counters. The

area lights cast soft shadows that harden on con-

tact above the counters. This scene was modeled

by Jeremiah Fairbank and William Stokes.

Figure 5.16: Characteristics of the models used for testing.

123

tor). Glossy and diffuse materials are supported for direct lighting. Indirect

lighting is only supported through the specular path. Using Heckbert nota-

tion 7 [Hec90], ES ∗ (D|G|S)?L paths are supported. Texture anti-aliasing

is supported through the use of ray differentials [Ige99].

• Dense Sampling: This is the dense sampling algorithm discussed in Section

5.2. Primary and shadow rays are computed using the same acceleration

structure as the standard ray tracer. As in the standard ray tracer, ES ∗
(D|G|S)?L paths are supported.

• Sparse Sampling/Interpolated: This is the sparse weighted sample algo-

rithm discussed in Section 5.3.1. The glossy direct lighting component is not

computed, nor is indirect through a specular bounce. Primary and shadow

rays are computed using the same acceleration structure as the standard ray

tracer. ED?L paths are supported.

• Sparse Sampling/Reconstructed: This is the sparse reconstruction cut

algorithm discussed in Section 5.3.2. Primary and shadow rays are computed

using the same acceleration structure as the standard ray tracer. ED?L paths

are supported.

For the sparse sampling algorithms, we used approximately 5,000 samples for

each image. We break down the statistics for each of the sampling algorithms into

sample generation and sample reconstruction and report those below the total

statistics for each algorithm. For sample generation, we amortize the cost over all

the pixels in the image. The total time spent in sampling and reconstruction is

7We actually use an extension of Heckbert notation, where G is used for glossy
reflections and ? is used for zero or one bounces of the previous type.

124

also reported.

Timings are given for a single-processor 1.7Ghz Pentium IV rendering a 512 ×
512 image. Times scale linearly with the number of pixels and inversely with the

number of processors.

The results show that the dense sampling algorithm provides a modest speedup

over the conventional ray tracer for models with several hundreds of lights. As the

number of virtual lights increases (e.g. the Kitchen model), the speedup is more

substantial. Note that the dense sampling algorithm generates images that are

almost indistinguishable from the conventional ray tracer.

The sparse sampling algorithms provide a very large speedup over the con-

ventional ray-tracer and the dense sampling algorithms, allowing interactive walk-

throughs on a cluster of CPUs. The sparse/interpolated algorithm is faster than the

sparse/reconstructed algorithm, but has substantial artifacts, particularly around

shadow boundaries. The sparse/reconstructed algorithm captures some shadow

boundaries but still exhibits some artifacts due to undersampling. Both sparse

sampling algorithms have difficulty with glossy and specular surfaces.

5.6 Conclusion

In this chapter, we presented three related direct lighting algorithms that can effi-

ciently render environments with hundreds of lights. The dense sampling algorithm

can be used to produce still images that are nearly indistinguishable from a ref-

erence image, but take less time to produce. The two sparse sampling algorithms

can be used for interactive walkthroughs on clusters of computers, but the quality

is often not sufficient for final production.

125

Standard Ray Tracer Dense Sampling

Sparse Sampling/Interpolated Sparse Sampling/Reconstructed

Algorithm Number of Lights Number of Shadow Total Time Speedup
Evaluated per Pixel Rays Cast per Pixel for Image

Standard 831 626 1694s 1x
Dense 118 118 612s 2.8x
Sparse/Interpolated 2.2 2.2 20.3s 83.4x
Sampling 2.2 2.2 11.7
Interpolation 0 0 8.6s
Sparse/Reconstructed 27.7 6.1 50s 33.9x
Sampling 2.2 2.2 11.7s
Reconstruction 25.5 3.9 38.3s

Figure 5.17: Results for Grand Central Station. Note the blurring of the shadow

in the sparse/interpolated algorithm, corrected by the sparse/reconstructed algo-

rithm.

126

Standard abs(Standard-Dense)

abs(Standard-Interpolated) abs(Standard-Reconstructed)

Figure 5.18: Difference images for Grand Central Station. The dense sampling

algorithm is mostly identical to the standard ray tracer. Both sampling algorithms

exhibit error at specular surfaces, such as the windows, since they do not handle

specularity. We also see error close to the light sources since irradiance is rapidly

changing and requires high sample density. The sparse/interpolated algorithm

exhibits error around the sharp shadow in the center of the image, while the

sparse/reconstructed algorithm does not, as expected.

127

Standard Ray Tracer Dense Sampling

Sparse Sampling/Interpolated Sparse Sampling/Reconstructed

Algorithm Number of Lights Number of Shadow Total Time Speedup
Evaluated per Pixel Rays Cast per Pixel for Image

Standard 839 610 993s 1x
Dense 54 54 257s 3.86x
Sparse/Interpolated 1 1 15.5s 64.1x
Sampling 1 1 4.9s
Interpolation 0 0 10.6s
Sparse/Reconstructed 39.7 8.4 64.9s 15.3x
Sampling 1 1 4.9s
Reconstruction 38.7 7.4 60s

Figure 5.19: Results for Mosque de Cordoba. The dense sampling algorithm cap-

tures gloss on the columns not seen in the sparse sampling algorithms.

128

Standard abs(Standard-Dense)

abs(Standard-Interpolated) abs(Standard-Reconstructed)

Figure 5.20: Difference images for Mosque de Cordoba. The dense sampling algo-

rithm is almost identical to the standard ray tracer. The differences in the sparse

sampling algorithms are primarily due to not handling glossy surfaces. The in-

terpolated algorithm also exhibits error at the sharp shadows at the base of the

columns.

129

Standard Ray Tracer Dense Sampling

Sparse Sampling/Interpolated Sparse Sampling/Reconstructed

Algorithm Number of Lights Number of Shadow Total Time Speedup
Evaluated per Pixel Rays Cast per Pixel for Image

Standard 4608 976 7200s 1x
Dense 141 141 626s 11.5x
Sparse/Interpolated 2.7 2.7 21.9s 328x
Sampling 2.7 2.7 11.9s
Interpolation 0 0 10s
Sparse/Reconstructed 67.3 21.9 141s 51.1x
Sampling 2.7 2.7 11.9s
Reconstruction 64.6 19.2 129s

Figure 5.21: Results for Residential Kitchen. The sparse/reconstructed algorithm

renders a smooth soft shadow below the cabinet, compared to a blurry shadow

from the sparse/interpolated algorithm.

130

Standard abs(Standard-Dense)

abs(Standard-Interpolated) abs(Standard-Reconstructed)

Figure 5.22: Difference images for Residential Kitchen. In the dense sampling al-

gorithm we see some error in the darker regions, where the bound on the maximum

number of nodes takes effect. The sparse sampling algorithms show errors on glossy

and specular regions such as the sink and oven door. The sparse/interpolated al-

gorithm also shows errors at shadow boundaries.

131

These algorithms do have weaknesses. The dense sampling algorithm primarily

suffers from being too slow. Although faster than the standard ray tracer, it is not

fast enough to produce images at an interactive rate. It also has difficulties dealing

with very dark regions, where we are most sensitive to error. We have dealt with

this problem by placing an arbitrary cut-off on the size of the tree cut, but this

can sometimes lead to visible error.

The weighted sum reconstruction algorithm is comparatively fast, but intro-

duces errors. It only deals with the direct diffuse illumination component, so

scenes with specular or glossy materials will not look right. It suffers from sam-

pling error; features smaller than the sampling density will be missed. It also blurs

shadow boundaries so hard shadows, caused by small or distant lights, are ren-

dered incorrectly. Soft shadows that harden on contact between two surfaces (an

important visual cue) also cannot be rendered correctly.

The reconstruction cut algorithm can correctly capture hard shadows and soft

shadows hardening on contact. However, it is somewhat slower than the weighted

sum reconstruction algorithm. It also does not address the problems of sampling

error nor the problem of non-diffuse surfaces.

Some of these problems have straightforward solutions. Problems in dark re-

gions for the dense sampling algorithm could be reduced by keeping track of when

the maximum possible total contribution of the remaining nodes falls below the

minimum representable pixel value (instead of having an arbitrary number-of-

nodes limit). Both sparse sampling algorithms could deal with specular surfaces if

the sample generation implementation followed the specular path when generating

sample locations.

Some of the other problems have more difficult but feasible solutions. The

132

reconstruction cut sparse sampling algorithm might be able to deal with some low-

gloss materials by computing the upper-bound of the BRDF values for the lights in

a cluster and not classifying the node as an interpolation node if the bound is too

high. The weighted sum reconstruction algorithm might also be able to deal with

low-gloss surfaces by storing vector irradiance at sample points. Vector irradiance

represents not just the total irradiance at a point, but also the average direction

the illumination is coming from.

One problem does, however, require significant research to solve. That problem

is the sampling error introduced by the sparse sampling algorithms. Any illumi-

nation features that are completely missed by the samples will not be rendered. A

solution to such a problem would have to involve discovering where small, visible

features are, and ensuring a sample is located there.

Although these algorithms have weaknesses, they also have significant strengths.

The algorithms are not sensitive to geometric complexity. They do not depend on

polygonal geometry nor do they slow down significantly as the number of objects

in the scene increases. They are also easily parallelizable, allowing us to increase

performance by adding CPUs. Finally, and most importantly, they can render

realistic scenes with hundreds of light sources.

In conclusion, we have provided the ability to move around in a realistic, com-

plex environment at interactive rates. If a user finds a view that is interesting, they

can pause and generate a high quality image in a fraction of the time that would

be taken by conventional algorithms. This functionality can be used by architects,

lighting designers and movie makers to work on realistic models with ease.

Chapter 6

Conclusion

Ray tracing is the best known technique for handling high scene complexity. It

can deal with high geometric complexity because it is sub-linear in the number of

geometric primitives used and because it is not restricted to triangular geometry.

It can also cope with material complexity, allowing for a variety of materials to

be used. However, since its computation times are linear with the number of light

sources, it does not deal well with complex direct lighting situations. Architects

and lighting designers have to wait for hours to obtain accurate renderings of

complex scenes.

In this thesis we have introduced several algorithms for accelerating the ren-

dering of direct lighting in ray tracers. We have described a technique for reducing

the computational cost of “shadow rays” used to determine the expensive visibility

component of direct lighting. We have also developed several related techniques

for reducing the number of shadow rays in highly complex scenes with many lights.

We described a method for accelerating shadow rays called “Local Illumination

Environments.” This algorithm subdivided a scene spatially with an octree data

structure. At each octree cell, we computed, through view-driven sampling, a list

133

134

of all geometry necessary to compute shadow rays from surfaces within that cell.

This list was then cached at the cell and used by a conventional ray tracer to avoid

the traversal through an acceleration structure for each shadow ray, as well as to

avoid many unnecessary ray-geometry intersection tests. We demonstrated over

an order of magnitude acceleration over conventional shadow rays in scenes with

a few dozen light sources.

We also described a method for reducing the number of shadow rays cast called

“Hierarchical Light Clusters”. This algorithm built a hierarchy of groups of lights.

It then decided which levels of the hierarchy to use at each point to be rendered

based on simple perceptual metrics. We showed how to use this mechanism in

a high-quality setting, where image quality is of paramount concern, and in an

interactive setting, where the time it takes to generate an image is most important.

This algorithm showed significant speedups over conventional ray tracing in very

complex scenes with thousands of light sources.

These techniques do have limitations. The sampling-based algorithms are con-

strained by the fact that they miss illumination features that are not sampled.

This means that small or thin shadows and lights are not portrayed in rendered

images until the sampling density becomes high enough. This problem is partic-

ularly apparent in the “Local Illumination Environments” algorithm, where the

cell subdivision of the environment makes features even smaller than they would

normally be. In Chapter 4, we showed that this problem means that it is un-

reasonable to use LIEs in very complex environments. The “Hierarchical Light

Clusters” sampling algorithm also has difficulty finding small features. However,

the problem is greatly reduced by not relying on a spatial subdivision of the scene.

“Hierarchical Light Clustering” does have its own unique problems though. It

135

relies on the assumption that if a cluster makes a small enough contribution to

the lighting at a point, it is reasonable to approximate it with the lighting just

from its representative light. However, under certain geometric configurations of

occluders, e.g. geometry precisely aligned with the representative lights, the error

from multiple small clusters becomes coherent, and we get noticeable artifacts.

Another limitation of these algorithms is their computational cost. Although

significantly less expensive than conventional ray tracing, these techniques require

clusters of computers to yield interactive rates. However, we believe that within a

few years processing power will have increased enough to run these algorithms on

a single workstation.

There are several natural extensions to this research. For example, the re-

construction cut algorithm in “Hierarchical Light Clusters” could be adapted to

non-diffuse surfaces. This would be done by computing bounds on the surface re-

flection properties, as done for the high-quality algorithm, and using these bounds

to determine when interpolation among samples is appropriate.

Another possible extension is to use off-line techniques for all the sampling

algorithms described. The goal would be to generate and store samples a priori

instead of while the user is moving around. This would be done by establishing a

fixed sampling density for the entire environment and generating samples over all

surfaces. Alternatively, if a movement path is known ahead of time, samples could

be focused on those parts of the environment visible from the path.

One possible route to make the “Local Illumination Environments” algorithm

faster would be to take advantage of SIMD instructions available in today’s PCs.

Highly optimized ray tracers currently take advantage of SIMD instructions by

either intersecting multiple triangles with a single ray or multiple rays with a single

136

triangle. We would make use of the multiple simultaneous triangle intersections

to walk through the list of potential “blockers” more quickly. The algorithm is

particularly well suited to this type of optimization since all the geometry we will

be intersecting against for shadow testing is known as soon as we intersect the

surface. This knowledge allows for prefetching of the geometry data, reducing the

effects of memory latency.

Since the “Hierarchical Light Clusters” algorithm is not very sensitive to light-

ing complexity, it could be adapted to handle indirect illumination, not just direct

illumination. This would be done by automatically generating a large appropri-

ately distributed set of virtual point lights to mimic indirect illumination. This

technique is already utilized by movie studios where lighting designers spend a

great deal of time setting up small numbers of lights that mimic real illumination.

Real environments are vastly complex. Modeling and rendering scenes with

realistic lighting in anything but “toy” scenes is currently a slow, difficult process.

Architects and lighting designers must wait hours for renderings, manually fake the

lighting to reduce complexity, or accept inaccurate renderings. It is our hope that

the work in this thesis can be used to make the modeling of real-world environments

more accurate and less labor-intensive.

Bibliography

[AAM03] Ulf Assarsson and Tomas Akenine-Möller. A geometry-based soft
shadow volume algorithm using graphics hardware. ACM Transac-
tions on Graphics, 22(3):511–520, July 2003.

[Ama84] John Amanatides. Ray tracing with cones. In Hank Christiansen,
editor, Computer Graphics (SIGGRAPH ’84 Proceedings), volume 18
of Annual Conference Series, pages 129–135, 1984.

[AMA02] Tomas Akenine-Möller and Ulf Assarsson. Approximate soft shadows
on arbitrary surfaces using penumbra wedges. In 13th Eurographics
Workshop on Rendering, pages 297–306, June 2002.

[ARHM00] M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll. Efficient
image-based methods for rendering soft shadows. In Kurt Akeley, ed-
itor, Computer Graphics (SIGGRAPH ’00 Proceedings), Annual Con-
ference Series, pages 375–384, 2000.

[BDT99] Kavita Bala, Julie Dorsey, and Seth Teller. Radiance interpolants for
accelerated bounded-error ray tracing. ACM Transactions on Graph-
ics, 18(3):1–45, July 1999.

[Bla72] H. Richard Blackwell. Luminance difference thresholds. In Handbook
of Sensory Physiology, volume VII/4: Visual Psychophysics, pages 78–
101. Springer-Verlag, 1972.

[CCWG88] Michael Cohen, Shenchang Eric Chen, John R. Wallace, and Donald P.
Greenberg. A Progressive Refinement Approach to Fast Radiosity Im-
age Generation. In Computer Graphics (SIGGRAPH ’88 Proceedings),
volume 22 of Annual Conference Series, pages 75–84, August 1988.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed
ray tracing. In Proceedings of the 11th annual conference on Computer
graphics and interactive techniques, pages 137–145, 1984.

137

138

[Cro77] Franklin C. Crow. Shadow algorithms for computer graphics. In Com-
puter Graphics (SIGGRAPH ’77 Proceedings), volume 11 of Annual
Conference Series, pages 242–248, San Jose, California, July 1977.

[DDP97] Frédo Durand, George Drettakis, and Claude Puech. The visibility
skeleton: A powerful and efficient multi-purpose global visibility tool.
In Computer Graphics (SIGGRAPH ’97 Proceedings), Annual Confer-
ence Series, pages 89–100, Los Angeles, California, August 1997. ACM
SIGGRAPH / Addison Wesley.

[FBG02] Sebastian Fernandez, Kavita Bala, and Donald P. Greenberg. Local
illumination environments for direct lighting acceleration. In 13th Eu-
rographics Workshop on Rendering, pages 7–14, June 2002.

[FFBG01] R. Fernando, S. Fernandez, K. Bala, and Donald P. Greenberg. Adap-
tive shadow maps. In Computer Graphics (SIGGRAPH ’01 Proceed-
ings), Annual Conference Series, pages 387–390, August 2001. E. Fi-
ume, editor.

[GH00] Reid Gershbein and Patrick M. Hanrahan. A fast relighting engine
for interactive cinematic lighting design. In Computer Graphics (SIG-
GRAPH ’00 Proceedings), Annual Conference Series, pages 353–358.
ACM Press / ACM SIGGRAPH / Addison Wesley Longman, July
2000. ISBN 1-58113-208-5.

[Gla89] Andrew S. Glassner, editor. An Introduction to Ray Tracing. Academic
Press, San Diego, CA, 1989.

[Gla95] Andrew S. Glassner. Principles of Digital Image Synthesis. Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 1995.

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and
Bennett Battaile. Modelling the interaction of light between diffuse
surfaces. In Computer Graphics (SIGGRAPH ’84 Proceedings), vol-
ume 18 of Annual Conference Series, pages 212–222, July 1984.

[HDG99] D. Hart, P. Dutré, and D. Greenberg. Direct illumination with lazy
visibility evaluation. In Computer Graphics (SIGGRAPH ’99 Proceed-
ings), Annual Conference Series, pages 147–154, August 1999.

[Hec90] Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray
tracing. In Computer Graphics (SIGGRAPH ’90 Proceedings), vol-
ume 24 of Annual Conference Series, pages 145–154, August 1990.

[HF86] D. C. Hood and Finkelstein. Volume 1: Sensory processes and percep-
tion. In Handbook of perception and human performance, New York,
NY, 1986. John Wiley & Sons.

139

[HG86] E. Haines and D. Greenberg. The light buffer: A shadow-testing accel-
erator. IEEE Computer Graphics & Applications, 6(9):6–16, Septem-
ber 1986.

[HSA91] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierar-
chical radiosity algorithm. In Computer Graphics (SIGGRAPH ’91
Proceedings), volume 25 of Annual Conference Series, pages 197–206,
July 1991.

[HW94] E. Haines and J. Wallace. Shaft culling for efficient ray-traced radiosity.
In P. Brunet and F. W. Jansen, editors, Second Eurographics Workshop
on Rendering, New York, NY, 1994. Springer-Verlag.

[Ige99] Homan Igehy. Tracing ray differentials. In Computer Graphics (SIG-
GRAPH ’99 Proceedings), Annual Conference Series, pages 179–186,
August 1999.

[JC98] Henrik Wann Jensen and Per H. Christensen. Efficient simulation of
light transport in scenes with participating media using photon maps.
In Computer Graphics (SIGGRAPH ’98 Proceedings), Annual Confer-
ence Series, pages 311–320, Orlando, Florida, July 1998. ACM SIG-
GRAPH / Addison Wesley. ISBN 0-89791-999-8.

[Kaj86] James T. Kajiya. The rendering equation. In Computer Graphics
(SIGGRAPH ’86 Proceedings), volume 20 of Annual Conference Se-
ries, pages 143–150, August 1986.

[KJ94] A. J. F. Kok and F. W. Jansen. Source selection for the direct lighting
computation in global illumination. In P. Brunet and F. W. Jansen,
editors, Photorealistic Rendering in Computer Graphics, pages 75–82,
1994.

[LTG92] Daniel Lischinski, Filippo Tampieri, and Donald P. Greenberg. Dis-
continuity Meshing for Accurate Radiosity. IEEE Computer Graphics
and Applications, 12(6):25–39, November 1992.

[PPD98] E. Paquette, P. Poulin, and G. Drettakis. A light hierarchy for fast ren-
dering of scenes with many lights. Eurographics ’98, 17(3), September
1998.

[SG94] A. James Stewart and Sherif Ghali. Fast computation of shadow
boundaries using spatial coherence and backprojections. In Computer
Graphics (SIGGRAPH ’94 Proceedings), volume 28 of Annual Confer-
ence Series, pages 231–238, 1994.

[SS98] Cyril Soler and Francois X. Sillion. Fast calculation of soft shadow
textures using convolution. In Computer Graphics (SIGGRAPH ’98
Proceedings), Annual Conference Series, pages 321–332, August 1998.

140

[SSS01] A. Scheel, M. Stamminger, and H.-P. Seidel. Thrifty final gather for
radiosity. In 12th Eurographics Workshop on Rendering, pages 1–12,
June 2001.

[SSS02] A. Scheel, M. Stamminger, and H.-P. Seidel. Grid based final gather
for radiosity on complex clustered scenes. In Eurographics ’02, 2002.

[SWZ96] P. Shirley, C. Wang, and K. Zimmermann. Monte carlo techniques for
direct lighting calculations. ACM Transactions on Graphics, 15(1),
January 1996.

[War94] G. Ward. Adaptive shadow testing for ray tracing. In Second Eu-
rographics Workshop on Rendering, pages 11–20, New York, 1994.
Springer-Verlag.

[WBS03] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Interactive global
illumination in complex and highly occluded environments. In 14th
Eurographics Workshop on Rendering, pages 74–81, June 2003.

[WCG87] John R. Wallace, Michael F. Cohen, and Donald P. Greenberg. A
two-pass solution to the rendering equation: a synthesis of ray trac-
ing and radiosity methods. In Computer Graphics (SIGGRAPH ’87
Proceedings), volume 21 of Annual Conference Series, pages 311–320,
July 1987.

[Whi80] Turner Whitted. An improved illumination model for shaded display.
CACM, 23(6):343–349, 1980.

[WHSG97] Bruce Walter, Philip Hubbard, Peter Shirley, and Donald Greenberg.
Global illumination using local linear density estimation. ACM Trans-
actions on Graphics, 16(3):217–259, July 1997.

[Wil78] Lance Williams. Casting curved shadows on curved surfaces. In Com-
puter Graphics (SIGGRAPH ’78 Proceedings), volume 12 of Annual
Conference Series, pages 270–274, Atlanta, Georgia, August 1978.

[WRC88] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A
ray tracing solution for diffuse interreflection. In Computer Graph-
ics (SIGGRAPH ’88 Proceedings), volume 22 of Annual Conference
Series, pages 85–92, August 1988.

[WS01] I. Wald and P. Slusallek. State of the art in interactive ray tracing. In
State of the Art Reports, Eurographics 2001, pages 21–42. Eurograph-
ics, Manchester, United Kingdom, 2001.

