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ABSTRACT

A fundamental limitation of traditional two-dimensional compositing is that it

lacks the spatial information necessary for realistically merging live video with

simulated environments. We introduce a novel three-dimensional compositing sys-

tem that leverages multiple camera viewpoints to generate a geometric model of

the foreground object. The foreground object can then be merged with a virtual

background environment in three-space. Using the three-dimensional definitions

of the foreground and background geometries, we correctly handle occlusions and

generate physically-based global illumination effects, including shadows and inter-

reflections. Knowledge of the scene structure also removes the fixed camera con-

straint of 2D systems, and we allow the viewer to specify an arbitrary camera

location.

To demonstrate the feasibility of interactive 3D compositing, we have built a

prototype system. Our system consists of four video cameras, four client computers

to perform the image processing operations, and a server that executes the recon-

struction algorithm, computes the global illumination effects, and generates the

final rendered image. Both the reconstruction of the foreground geometry and the

scene compositing occur in real-time, allowing our hardware and software system

to merge live interactive video content with virtual worlds.

This thesis focuses on the geometric reconstruction and shadowing algorithms

used in our system. We compute the intersection of the silhouette cones from

multiple cameras to calculate a polyhedral hull of the foreground geometry. We

implement a shadow generation technique based on the penumbra map algorithm,



and by leveraging the computational power of the GPU, we simulate soft shad-

ows in hardware. Our system is capable of reconstructing geometry and casting

believable shadows onto the surrounding environment at interactive frame rates.
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Chapter 1

Introduction

Over the past several years, the merging of live video footage with synthetic im-

agery has grown in popularity. Primarily driven by the entertainment industry,

and more specifically the field of visual effects, it is becoming increasingly common

to substitute some or all of a complicated movie sequence with computer-rendered

alternatives. Aided by recent advancements in graphics hardware, lighting and

material models, and development tools, it is now possible to create realistic look-

ing images of items and places that do not exist outside the digital realm. In many

instances, using a computer replaces the tedious process of physically building sets

and costumes for filming exotic environments. This affords artists a broader range

of possibilities, as they are no longer constrained by the pragmatic limitations of

physical construction.

The introduction of visual effects has also caused a dramatic shift in the finan-

cial aspect of the entertainment industry. Evidence of this is shown in Figure 1.1,

whereby we see that nine of the top-ten grossing films of 2003 are “effects” films

that make use of compositing live action footage with synthetic imagery. The tenth

movie, Finding Nemo, was entirely computer generated, and has no live video.

1
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Figure 1.1: Nine of the top-ten grossing films in 2003 [Box04] combine live ac-

tion footage with synthetic imagery. The remaining film, Finding Nemo, consists

entirely of computer animation, and has no live video.

Given current compositing techniques, it is not a simple task to incorporate

high resolution film or video footage and synthetic digital content in the same

scene. For example, say one wanted to create an image of a person standing on an

extraterrestrial surface. Breaking the task into its components, it is trivial to cap-

ture an image of a person standing, and it is equally trivial (assuming a sufficiently

talented modeler) to create a representation of the simulated terrain in any number

of commercially available software packages. The challenge arises in finding a way

to combine the two images such that the final result is believable. A large body of

work has been published in the areas of image matting and compositing, however,

there are still significant limitations that need to be addressed.

A serious drawback of traditional compositing techniques is that after matting

out the foreground, one is left with only a two dimensional representation of the

desired subject. This makes it difficult to create a convincing composite, as crucial
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spatial information is inherently missing. Without having some understanding as

to the shape of the object being composited, it is impossible to recreate the lighting

effects and physical interactions that would naturally arise if the foreground and

background were in proximity to each other. For example, casting shadows from

an arbitrary light source, or determining if the foreground object has “bumped”

into a part in the background model, remains a daunting task without having a 3D

definition of the inserted object. In Figure 1.2 we see an example of a traditional

compositing approach. After the subject has been extracted from the background,

the 2D representation is inserted into a background image. Scene interactions,

including shadows and other GI effects, must either be added manually by an

artist or generated by duplicating and skewing the subject’s 2D silhouette. This

approach only works if the light has a similar view of the object as the original

camera, making the technique limited in its applications.

Another deterrent to the use of existing techniques is the time it takes to per-

form the rendering and compositing processes. In the motion picture industry, it is

not uncommon for computer-generated frames to takes hours to render. For exam-

ple, in the movie Shrek 2 (2004), each frame in the crowd scenes took between 30

and 40 hours to render. In total, it took approximately ten million computer hours

to render the one-hour and 45-minute film. The work was performed on a render

farm of 3,000 Pentium 4 processors [SFG]. When working with film sequences

that are composites of live action recordings and computer imagery, each frame

is often the result of a dozen or more sub-layers. An artist traditionally performs

the compositing by hand, an off-line operation that can take hours to complete.

This is a painstaking process, during which the artist attempts to recreate the

lighting effects that would have existed in the synthetic environment. The task
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Figure 1.2: When only a single camera is used, the matte operation results in a 2D

“cut-out” of the foreground (A). The matte is then composited with the background

image (B). The shadow’s shape can be approximated by duplicating and skewing the

foreground matte (C). In (D), the shadow’s color and opacity have been adjusted.

This technique does not handle arbitrary light source locations or easily casting

shadows onto the foreground, as the occluder and receiver geometry is unknown.
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Figure 1.3: Shown above are several images from PDI Dreamworks’ Shrek 2

(2004). Although most of the frames in Shrek 2 took less than 12 hours to render,

the crowd scenes took between 30 and 40 hours per frame [SFG].

is made particularly difficult because the only information available to the artist

is 2D imagery; crucial spatial information concerning the shape of the object is

missing. Furthermore, the user receives no immediate feedback about the quality

of the work until hours or days after the filming has concluded.

We are attempting to build a system that can composite live action footage

with synthetic imagery in an interactive environment. Unlike the movie industry,

real-time compositing is important for live broadcasts such as the news or sporting

events, which often use virtual content to augment recorded media. The system we

envision could potentially serve as a direct substitute for current interactive com-

positing systems, providing additional information in the form of 3D foreground



6

geometry. On the other end of the spectrum, the system could be used to add en-

tirely new functionality, allowing the viewer to move the camera around the scene

and observe the broadcast from an arbitrary viewpoint. Given the current trend

in advancing television and broadcast technology, it may be possible in the near

future to transmit scene geometry and thus permit view mobility. Knowing the

foreground and background scene geometry allows the system to simulate global

illumination (GI) effects such as shadows and inter-reflections. These GI effects

lend to the believability of the composite images and result in a more immersive

experience for the viewer.

In this thesis, we present a novel approach to the problem of compositing live

video footage with synthetic imagery. Our method, which builds on recent research

in the field of geometric reconstruction, employs the use of several video cameras to

capture the shape of a dynamic foreground object. By having a three dimensional

representation of the object, we are able to produce more realistic composites than

is possible using prior two-dimensional matting techniques. We present a unique

approach for casting shadows between the foreground and background environ-

ments, and we discuss how this work can be further extended to produce more

accurate simulations. This thesis will specifically focus on the aspects of geometric

reconstruction and shadow generation. For details concerning advanced texturing

methods and reflections, refer to [Kra04]. The foreground reconstruction and com-

positing processes operate interactively, and we have been able to achieve several

frames per second with our current system configuration. Figure 1.4 shows an

overview of the basic steps used in our compositing system.

Perhaps even more so than film or television, our system is well suited for

applications in virtual reality and interactive gaming. Within these contexts, the
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Figure 1.4: The figure above illustrates our compositing approach. We use mul-

tiple views (A) of the subject to reconstruct a three dimensional approximation of

its shape (B). We use this model to cast shadows (C) and simulate other GI ef-

fects such as inter-reflections [Kra04]. Having a model of the object allows for the

creation of more physically accurate composites (D).
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users are typically permitted free range to move the camera anywhere they desire.

This type of immersive environment plays to our system’s strengths, because our

3D representation of the foreground and background geometries allows for complete

viewing freedom. Unlike traditional compositing systems, we do not require that

the virtual camera’s pose match that of any of the original cameras filming the

scene. Instead, a user is able to select an arbitrary viewing location, and our system

will render the generated model and the background from the specified position

and orientation.

Chapter Two presents a literature review of previous geometric reconstruction

and shadow algorithm research. Chapter Three covers the basic implementation

details of our system’s hardware and software configuration. The polyhedral visual

hull algorithm [MBM01], used for the creation of the foreground models, is ad-

dressed in Chapter Four. Chapter Five introduces our novel technique for shadow

generation, and Chapter Six outlines the results of our system’s capabilities. Fi-

nally, in Chapter Seven, we conclude with a summary of our contributions, and

suggestions for future work in the area of compositing live video with synthetic

imagery.



Chapter 2

Previous Work

There are several distinct bodies of research which have contributed to our work in

the area of merging captured geometry with synthetic environments. These fields

include geometric reconstruction, shadowing algorithms, and scene compositing

techniques. In the remainder of this chapter, the first two areas will be reviewed in

depth, as they were the primary focus of our research and have directly impacted

the work that was done.

2.1 Geometric Reconstruction

In order to create a convincing composite of several disparate entities, it is essential

that you reproduce the light interactions that would exist if they were in natural

proximity to each other. Shadowing phenomena are probably the single most

important visual cue that allow a viewer to gauge the relative positioning of objects

within a scene as well as determine where the light sources are located. In order to

accurately simulate these effects within a virtual environment, you need to know

something about the shape of the objects with which you are dealing.

9
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How to reproduce the geometry of an arbitrary body is a question that has

received a lot of attention over the past few years. Traditionally it has been a

painstaking process, whereby you take measurements of an object in the physical

world and then reconstruct its geometry with the aid of modeling software. An-

other alternative is to use complex hardware such as laser range scanners to produce

extensive point sets that define the object’s surface. Both of these methods are

very time consuming however, and thus are unsuited for interactive applications.

Some of the earliest work in the area of generating geometry from images

was done by Paul Debevec at the University of California at Berkeley. In his

PhD thesis [Deb96] and a related paper [DTM96] Debevec presents a method for

using several photographs of a large architectural environment to generate a photo-

realistic model of the scene. His software system, referred to as Facade, requires

the user to drive the modeling process by inputing some initial rough geometry in

the form of cubes, prisms and surfaces of revolution. The user also identifies edges

in the input photographs, and makes the correspondences between those edges and

the edges of the primitive geometry. The program then has enough information

to determine the pose of each of the cameras and the geometric parameters which

govern the model. The problem with this approach is that it still requires a fair

amount of user input, although much less than traditional modeling, and it takes

on the order of minutes to solve for the reconstruction parameters (depending on

the complexity of the scene).

At around the same time, work was being done by the group at Carnegie Mel-

lon University in the area of new view synthesis. Though not using an explicit

model for rendering, [SBK+99] describes a hybrid approach that uses knowledge

of the scene’s 3D structure to help avoid occlusion errors when performing 2D view
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morphing. This cross between model based rendering and image based rendering

consisted of creating a mesh, using multiple-baseline stereo [OK93], to determine

pixel correspondences when interpolating between two existing views. Unfortu-

nately this approach does not make any attempt to verify that the final image, as

seen from the virtual viewpoint, is geometrically correct.

Another approach to geometric reconstruction is voxel occupancy. A voxel is

defined as the smallest distinguishable box-shaped portion of a three-dimensional

space. In voxel occupancy, the goal is to be able to determine whether these

discretized spatial areas are occupied or empty. In 1997, Seitz and Dyer [SD97]

presented a novel method called “voxel coloring” that formulates the problem as

one of color reconstruction. They treat each voxel as having a single opaque color,

and their goal is to traverse the scene in depth order, coloring the voxels in a

manner that maximizes photo integrity. They present a visibility constraint that

facilitates the depth traversal of the scene, thus allowing their model to explicitly

handle occlusions. Through the use of many input images, their method is capable

of producing a dense reconstruction. This permits the final model to be accurately

viewed over a wide range of virtual viewpoints. Although they place limitations

on the locations of the cameras within the scene, such that no scene point is

contained within the convex hull of the camera centers, they claim that there

are many environments in which the system is amenable. In order to generate

a representation of sufficient quality for achieving photo realism, the scene has

to be highly discretized and there has to be a large number of input images.

Unfortunately, this results in long running times, often upwards of seconds or

minutes.

In 2000, Snow, Viola, and Zabih [SVZ00] presented a method for representing
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the voxel occupancy problem with an energy minimization formulation. Their ap-

proach stands out in that it doesn’t require the explicit computation of silhouettes,

and it has a term for incorporating spatial smoothness. Instead of having hard sil-

houette constraints, they deal with the soft constraints of an energy function that

allows pixels to take on their neighbors’ values. Their system uses the video input

from sixteen cameras which surround an image acquisition area. They attempt to

rebuild the shape of the foreground object by marking those voxels which contain

the subject as filled, and claiming the rest are empty. Unlike voxel coloring, a tech-

nique which assigns each voxel a color and a transparency and then prunes away

empty voxels based on color mis-matches between camera views, voxel occupancy

is a much easier problem to solve. Voxel occupancy treats the voxels within a scene

as nodes in a graph, where each node is connected to its six neighbors. The prob-

lem can then be treated as a form of energy minimization. The goal is to partition

the vertices into two disjoint groups, foreground and background, by making the

minimum number of cuts through the graph. Unfortunately this method is unable

to synthesize images from novel viewpoints in color, and the computational time

to perform the minimum cut is on the order of seconds. These qualities do not

lend themselves to interactive applications.

In 2000 and 2001, Matusik et. al. at MIT published several papers presenting

algorithms for rendering visual hulls at interactive frame rates. The visual hull

[Lau94] of an object is an upper bound on its volume, and thus is guaranteed to

contain the object. In their approach, they surround the object with an array of

cameras, and then treat the silhouettes from each of the cameras as a projected

cone, starting at the camera origin and extending through the image plane to

infinity. The next step is to intersect all of the cones to form an upper limit on the
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object’s volume. This upper limit, which is the visual hull, is highly dependent

on the number of cameras: the higher the camera count, the more refined the hull

becomes in its approximation. Visual hulls do have their short-comings, however.

Because of the fact that they are created through the intersection of extruded

silhouettes, this approach performs best when dealing with convex objects. If

an object has concavities which are internal to its silhouette contours, then it

becomes impossible to reconstruct the exact geometry regardless of the number of

viewpoints considered.

Matusik’s first paper [MBR+00] operated solely in image space, reducing a

classic three dimensional intersection problem to two dimensions through the use

of epipolar geometry to generate image correspondences. With this technique

they are able to produce a view-dependent visual hull that can be rendered from

novel view points. Using the video streams as textures during the shading stage,

this approach is able to produce renderings with a high degree of realism, despite

the limited geometric accuracy. However, since the algorithm does not explicitly

compute a volumetric representation, the types of scene interactions that can be

performed are limited.

In a related paper a year later [MBM01], Matusik extended the algorithm

to reconstruct a polyhedral representation of the object. Like its predecessor, this

algorithm also falls into the realm of deriving shapes from silhouettes, by analyzing

images of an object’s surface from multiple viewpoints. However, instead of only

dealing with the intersection of projected rays in two dimensions, it has the ability

to generate polygons when projecting the silhouette edges on to the other image

planes. Using a novel intersection algorithm, they can then find the overlapping

area of all such polygons that exist for a given edge. The mesh which defines
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the object’s surface is consequently formed by taking the aggregate of all the

intersection polygons. In 2002, [MBM02] presents a more efficient algorithm for

computing the silhouette cone intersection which exploits the special structure of

generalized cone polyhedra.

Addressing the capture and reconstruction of objects with complex surface

characteristics, such as highly specular, transparent or refractive surfaces, or those

with fuzzy geometry (fur, hair, etc), Matusik et. al. published a series of work

[MPZ+02] [MPN+02] in 2002. Unlike his previous IBVH and PVH work, these

algorithms require a high degree of pre-processing, taking several hours to capture

all the necessary images, and then often require upwards of a day or more to

process the data. The goal in these cases is to be able to capture as much detail as

possible, so that when the model is re-rendered from an arbitrary location a high

degree of realism results.

In 2002, Li, Schirmacher, and Seidel at the Max-Planck-Institut [LSS02] dis-

covered that by combining the polyhedral visual hull algorithm with a depth from

stereo approach, it is possible to determine the location of concavities within the

hull. Depth from stereo is a technique that takes advantage of the fact that when

all the objects in a scene are shifted by the same amount, objects which are closer

to the viewer appear to have moved farther than objects which are far away. Keep-

ing this in mind, pairs of images can be used to determine the relative depths of

neighboring pixels by observing how far each pixels’ location has changed from

the left image to the right image. If a region of pixels appears to have moved

less than its surroundings, then those pixels represent a surface which is slightly

farther away, and thus implies a concavity. Although this technique has the added

benefit of being able to determine concave regions, it adds extra complexity to the
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original algorithm, particularly in how to merge the depth changes back into the

original polyhedral hull. It also requires more hardware, as now two cameras are

required at each acquisition location instead of just one (a necessary component

for stereo-based reconstruction).

That same year, Slabaugh [SS02] presented an algorithm for rendering novel

views of an object’s photo hull. A photo hull is defined as the largest 3D shape that

is photo-consistent with photographs taken of a scene from multiple viewpoints.

A point in space is photo-consistent if it doesn’t project to the background and,

when visible, its radiance in the direction of each reference view is equal to the

observed color in the photograph. The algorithm, which is based on Matusik’s

IBVH algorithm [MBR+00], operates completely in image space and makes use of

color information in the form of additional constraints during the reconstruction

process. This results is more refined geometry than would be possibly using only

the IBVH algorithm, and it leads to better synthesized views of the captured scene.

The method does have its weaknesses, however, since surfaces that are predomi-

nantly one color make color-based reconstruction difficult. Such surfaces can lead

to many inconsistent pixels being registered as consistent. The photo-consistent

validation process also increases the reconstruction time above and beyond that of

the IBVH algorithm by roughly a factor of four.

A hardware accelerated approach to visual hull reconstruction was published by

Li in 2003 [LMS03]. They use standard commodity graphics hardware to generate

and render visual hulls at speeds of up to 80 frames per second. This is done by

using projective texturing in conjunction with OpenGL’s alpha test to determine

the overlapping regions for both the face-cone and polygon-polygon intersections.

One disadvantage of this approach is the fact that it combines both the visual hull
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generation and the final rendering into a single pass. Although this is a beneficial

speed optimization, as it reduces latency in the system, it limits the use of the

hull for such purposes as casting shadows. The polyhedral hull is only generated

as seen by the virtual viewpoint, and thus its geometry can not be accessed.

In 2003, Franco and Boyer [FB03] revealed an algorithm for generating an exact

polyhedral visual hull in real-time. Unlike the original PVH algorithm [MBM01],

the exact hull is guaranteed to be both manifold and watertight. Their algorithm

consists of three steps. First they back-project each vertex in the image plane

contours to form world space viewing lines. The viewing lines are successively

intersected with each additional silhouette, and the overlapping regions of inter-

section are recorded. The result is a set of intervals along the viewing lines, called

“viewing edges”, which form an unconnected subnet of the final visual hull. In the

second step, the missing surface points are identified. This is accomplished by in-

tersecting the planes which generated the viewing edges in order to determine the

search directions for the missing points. Each vertex is connected to exactly three

edges, so in addition to the viewing edge, a left and a right edge must be generated

for each viewing vertex. The search directions are then projected on to each image

plane and intersected with the silhouette contours. If the projected search segment

intersects the silhouette, then a “triple point” has been found, otherwise the new

edge leads to an existing viewing vertex. Triple points are where three viewing

cones intersect. After all the triple points have been located, the visual hull can

be reconstructed. The third and final step is to walk through the graph of edges,

identifying each face and converting the polygons to triangles.
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2.2 Shadowing Algorithms

2.2.1 Hard Shadows

The first shadowing algorithms were developed at IBM by Appel in the mid 1960s,

and since then shadows have remained a heavily studied topic within the field

of computer graphics. Shadows play a crucial role in the generation of realistic

images. They make clear the spatial relationships which exist between objects in a

scene, and they allow for easy identification of the light sources present. The only

exceptions are scenes where either the light’s position matches that of the camera

or the light sources are entirely diffuse.

The shadow volume algorithm was first introduced in the 1977 SIGGRAPH

proceedings by Franklin Crow [Cro77]. His method makes use of the boundaries

which exist between surfaces that face toward the light and those which face away

from the light in order to define a shadowed region. This volume is constructed

by extruding the light/dark silhouette edges to infinity in the direction away from

the light source. When rasterizing an image, one tracks the number of shadow

polygons crossed in the process of traversing the scene from the camera center to

the first object at any given pixel. If an odd number of shadow volume polygons

are crossed to reach the first object, then the pixel is in shadow. Otherwise, the

pixel is visible to the light source. Shadow volume algorithms tend to be fill rate

limited, as the shadow polygons extend to infinity and thus are quite large.

A year later, in 1978, Atherton, Weiler and Greenberg [AWG78] published work

that generated shadows using a polygon clipping hidden surface removal algorithm.

This particular technique consists of rendering the scene from the light’s point of

view, and thus determining the regions of complete visibility. The unoccluded
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areas of the scene, which are subject to direct lighting, are then added to the

environment as surface details on their original source polygons.

Also in 1978, Williams [Wil78] proposed a new shadow algorithm, called

shadow mapping, that involves rendering the scene twice, from the point of view

of the light, and then from the point of view of the observer. After rendering the

scene from the light’s point of view, a shadow map is created, each value of which

represents the distance from the light to the nearest object along a given path.

When rendering with respect to the observer, each of the world coordinate points

is transformed into the light’s local space. If the projected point is closer to the

light than the value stored in the shadow map, then that point is unoccluded and

should be rendered as lit. However, if the transformed location is farther away from

the light than the distance stored in the shadow map, then there exists a surface

between the light and the point in question and that point should be rendered in

shadow. Shadow maps tend to have aliasing problems when large numbers of pixels

in the eye view project into the same pixel location in the shadow map. Shadow

mapping is also subject to numerical imprecision in the depth buffer, which can

lead to noticeable artifacts near light/dark boundaries. Biasing the depth values

can often take care of this problem, as can rendering the back facing polygons

when creating a shadow map (false positives on the back face of an object are not

a problem, as the light’s contribution to the surface will be zero).

Another shadowing technique involves projecting the occluding geometry onto a

flat ground plane. This projected version defines the shadow region on the surface

of which it was cast. Blinn [Bli88] proposed such an algorithm in 1988. This

technique can be extended such that one renders the shadow to a texture. This

texture can later be projected on to an arbitrary receiving surface [SKvW+92].
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Finally there is the brute force ray tracing approach to shadow generation. A

typical ray tracer casts rays from the viewpoint through each of the pixels in the

image plane to determine the closest object. Starting at these intersection points,

rays are then shot to each of the lights in the scene. Using the most primitive

form of visibility testing, if the ray intersects any other objects before it reaches

the light, then the point is considered to be completely occluded, aka in shadow.

If no other object is hit before the light, then the point is visible and deemed lit.

In 2000, Michael McCool [McC00] from the University of Waterloo published

a paper which reviewed the pros and cons of each of the four general types of

shadowing algorithms (ray casting, shadow volumes, shadow mapping, and pro-

jection). He also proposed a novel hybrid technique that combined aspects of both

the shadow mapping and the shadow volume algorithms. His method involved

first rendering the scene with respect to the light, and then running a contour

finding algorithm on the resulting shadow map. The contours which are found

in the depth image represent large depth disparities within the scene, and are

consequently treated as silhouette edges between light and dark facing surfaces.

Using the contours as silhouette edges, shadow polygons which bound the shadow

volume can then be generated. This technique has benefits in that the models do

not need to be closed (2-manifold), as the boundaries between light and dark are

found from the shadow map. In addition, it enables the shadow volume algorithm

to be performed in hardware with only a single bit stencil buffer. Because there

can be no overlapping of the shadow polygons, the stencil buffer can be toggled as

you pass from regions of light to dark and vice versa.

A technique for eliminating the aliasing problems associated with shadow map-

ping was published in 2001 [FFBG01] by Randima Fernando, Sebastian Fernandez,
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Kavita Bala and Donald Greenberg from Cornell University. This algorithm op-

erates by using mip-mapping in hardware to determine the projected area of an

eye-view pixel in the shadow map (light view). When there is a large disparity

between the two views, a situation which has traditionally resulted in aliasing, the

program progressively subdivides and refines the shadow map in that particular

region. The shadow map is stored in a hierarchical grid structure than can be

updated as the user’s viewpoint changes, and the user can specify the amount

of memory allocated to the shadow map, so that it does not continue to grow

unchecked.

In 2002, Stamminger and Drettakis [SD02] presented a “perspective shadow

mapping” technique that also serves to reduce the aliasing problem associated with

standard shadow maps. Their approach generates the shadow map in normalized

device coordinates, and is especially beneficial for scenes with wide depth ranges,

where nearby shadows require much higher resolution than distant shadows. Using

this perspective method, the shadow map is view dependent, and provides variable

resolution so that objects close to the camera receive more detail. The shadow map

projection can still be represented by a 4x4 projection matrix, and thus is amenable

to graphics hardware. Due to its view dependent nature, the perspective shadow

map must be recomputed each frame if the camera is allowed to move. This,

however, is standard practice anyway in applications such as video games, where

both the shadow occluders and receivers are permitted to move.

2.2.2 Soft Shadows

Hard shadows are primarily the result of infinitely small light sources, where the

source begins to approximate a point light, or environments where the occluder is
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very close to the receiver. In the real world hard shadows are commonly observed

at contact points, where an occluder is physically touching the receiver surface.

However, most shadows that we are accustomed to seeing are soft shadows. Shad-

ows consist of multiple regions. The umbra, or the hard shadow, is the portion of

the shadow that is completely hidden from the light. The penumbra is a partially

shadowed region inside which the scene is transitioning from completely lit to com-

pletely in shadow. Soft shadows add a high degree of realism to a scene, and in

cases such as a dispersing contact shadow, can provide information concerning the

spatial layout of the objects.

In 1987, Reeves, Salesin and Cook [RSC87] introduced a new sampling method

called “percentage closer filtering” that can be used to reduce the aliasing artifacts

which arise in shadow mapping. Their technique has the added benefit that it

is capable of generating soft shadow edges that resemble penumbrae. Like the

standard shadow map algorithm, their approach projects a pixel into the light’s

view, and then determines its location within the shadow map. However, instead

of just performing a direct binary comparison to the stored depth value, they then

compare the projected pixel depth to all the values within a specified region. This

results in an array of binary values, one for each comparison made. The percentage

of comparisons that returned “1”, indicating shadow, becomes the pixel’s shadow

intensity. If half the comparisons returned shadow, then the pixel has a 0.5 shadow

intensity, placing it in the penumbra. By adjusting the filter size, aka the size of

the region of comparison, one can alter the characteristics of the penumbra. This

approach requires both additional time and resources to compute, however, as the

number of samples per region is constant, the additional cost is bounded by a

constant factor as well.
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Another technique that resulted in more accurate soft shadow simulation was

developed in 1992 by both Lischinski et. al. [LTG92] and Heckbert [Hec92]

independently. This procedure, called “discontinuity meshing”, was built on top

of radiosity, a popular algorithm for modeling global illumination effects in a diffuse

environment due to area light sources. They explain the relationship which exists

between discontinuities in the radiance function and its derivatives and the umbra

and penumbra boundaries within a scene. The algorithm maps out the radiance

function across a surface in object space, using a piecewise linear interpolant to

preserve the discontinuity edges. By explicitly modeling the important illumination

boundaries, it is possible to generate highly accurate soft shadows while using a

much courser mesh of the scene.

In a ray tracing context, soft shadows can be generated by casting multiple

samples to an area light and then calculating the visibility based on the percentage

of rays that were occluded. With a high sampling rate (casting many shadow

rays per light source), this technique yields very accurate results. Unfortunately,

shooting many rays per pixel is extremely costly in terms of the computation time

required per frame. This makes interactive applications implausible unless vast

amounts of computing resources are available.

One algorithm that addresses the issue of computational complexity associated

with shooting many shadow rays per light was published in 1998 by Steven Parker

et. al. from the University of Utah [PSS98]. Their method, which is geared

toward generating perceptually acceptable shadows quickly, involves using only a

single shadow ray per light to simulate the effects of a spherical area light. They

accomplish this by creating a semi-opaque outer shell which surrounds each object

in the scene and whose transparency varies from being completely opaque where
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it touches the inner object to being completely transparent at the outer edge.

When shooting a shadow ray, if the original object is intersected, then the point

is completely in shadow. If, however, the shadow ray hits the encompassing outer

geometry, then the visibility is computed based on the tangential distance to the

inner object. In this manner, smoothly varying penumbra regions between the

umbra and the completely lit portions of the scene are achieved. The radius of the

encompassing outer object is based on both the radius of the area light as well as

the ratio of the distance from the occluding surface to the receiver surface versus

the distance from the light to the receiver surface. The main drawback of this

method is that the umbra region never diminishes in size regardless of the position

or radius of the area light source. This is most noticeable when dealing with small

geometries where, in the limit, the umbra region can disappear entirely.

When dealing with soft shadow generation in hardware, a standard approach

has been to sample multiple locations on an area light source, rendering hard

shadows for each one, and then averaging the results together. This method was

presented in 1996 by Heckbert and Herf [HH96] [HH97] who use a texture map to

represent the radiance at each point on a receiver’s surface. In their algorithm they

select multiple light samples, which are spread across the lights in the scene, from

which to render the receiver and from which to project the occluding geometry

on to the receiver’s surface. The projected geometry, which is rendered in black,

serves to represent the shadows cast from that particular sample location. The

multiple passes are then averaged together using an accumulation buffer to gener-

ate a final radiance texture for the receiver surface. This can produce high quality

results, but only with a large number of samples (often as high as 256), where each

sample means an additional rendering pass. If there are too few samples taken, the
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result will not smoothly diminish to accurately simulate a soft shadow. Instead a

visible set of discrete hard shadows will remain in the form of a disconcerting arti-

fact. Because of the large number of rendering passes needed to produce suitable

results, this technique is prohibitive for anything other than offline applications or

applications where the textures can be precomputed. In the latter case, this places

the restriction that both the scene geometry and the light locations are static.

Another hardware-based soft shadow approach was revealed by Agrawala et al

[ARHM00] in 2000. They present two novel soft shadow algorithms that are built

on top of shadow mapping, one of which is designed for interactive applications,

and the other is for off-line use only. These techniques, termed “layered attenuation

maps” and “coherence-based raytracing” respectively, are image-based approaches

and thus are relatively independent of geometric scene complexity. The layered

attenuation map algorithm renders the scene from multiple points on the surface

of the light as a preprocessing step, and combines the generated depth maps by

warping them to the light’s center. This produces a modified, “layered depth

image” (LDI), which is indexed during the final rendering pass. Due to the fact

that the light samples are correlated for each surface location, this method is

susceptible to banding in the final image. Higher quality images are generated with

the coherence-based raytracing method, as the sampling limitation is no longer a

factor. Instead, shadow rays are traced through the multiple shadow maps, as

opposed to scene geometry, in order to shade a surface point. To reduce the

high cost associated with this operation, several novel acceleration structures for

handling the shadow ray computations are presented. Due to the expensive nature

of computing the modified LDI, which takes on the order of seconds to generate,

even their interactive algorithm is not well suited for applications where the objects
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are constantly moving.

In 2001, Haines presented another projective soft shadowing technique [Hai01].

His algorithm produces perceptually acceptable penumbrae in a single hardware

rendering pass. The end product is a texture of the shadow that can then be

mapped on to any type of receiving surface; however, the further the surface is

from a plane, the more unnatural the shadow appears.

One trend that is worth noting is the recent shift toward hardware-based ap-

proaches and programming for the graphics processing unit, or GPU. Inspired by

the latest round of graphics cards, which add increased flexibility over the tradi-

tional fixed-function pipeline, many of the current shadowing algorithms are being

designed with the GPU in mind. By performing the shadowing calculations in

vertex and fragment shaders instead of on the CPU, it frees up the CPU to direct

its attention to others areas of the code. This can result in dramatic performance

increases. As a result, it has become common to see shadow algorithms adopted so

that they map to the current level of graphics hardware available. The penumbra

wedge, smoothies, and penumbra map algorithms which we will talk about next

are three recent examples of methods that generate soft shadows by leveraging the

GPU.

In 2002, Akenine-Moller and Assarsson [AMA02] extend the standard shadow

volume algorithm so that it is capable of casting soft shadows on arbitrary receiver

surfaces. Their method replaces the hard-edged shadow polygon with a primitive

called the penumbra wedge. This primitive is used to depict the penumbra volume

created by a silhouette edge. Within the wedge, the shadow intensity varies linearly

across its span, from complete shadow on the inside edge to completely lit on the

outside edge. By defining the penumbra region as being the volume inside the
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wedges, this algorithm implicitly models the umbra region as well. The umbra is

the area contained inside the back-facing surfaces of all the wedges. A wedge is

created by extending two planes through a silhouette edge, one passing through

each side of the spherical light source, and then connecting those planes with

triangular side panels. As the depth of a wedge (the distance between its front and

back planes) is determined by the radius of the light source, along with the distance

between the light center and the silhouette edge, the algorithm has the added

benefit that it correctly models the fluctuating size of umbrae. This holds true

even to the point that the umbra region will disappear completely should the light

source be sufficiently large. The shadow wedge algorithm inherits several short-

comings from it’s shadow volume predecessor, including the inability to handle non-

polygonal shadow casting geometry. It also has some unique limitations associated

with the robustness of wedge generation. If a silhouette edge is nearly parallel to

the incoming light direction, then the generation of the wedge side planes will begin

to degrade and shadow artifacts will arise. In addition, errors can arise when two

objects overlap as seen by the light. In this scenario, it is highly probable that

their penumbra wedges will also overlap, and the algorithm’s proviso for handling

this case, which involves subtracting the light from both wedges, is not always

correct.

A year later, Assarsson and Akenine-Moller [AAM03] refined their approach,

augmenting both the robustness and performance of their shadow wedge algorithm

and adding additional features such as the use of video-textured light sources. The

new algorithm involves generating a “visibility mask” to store the shadow intensity

throughout the scene. The visibility mask is used to modulate the scene’s specular

and diffuse components, before the final ambient term is added in. In order to
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compute the visibility mask, it is necessary to determine the percentage of the light

that can be seen at any given surface point. This is accomplished by discretizing

the light source into 32x32 regions and generating a lookup table in the form of a

4D texture. Each point in the scene then indexes into the 4D texture to determine

the fraction of light it receives. By maintaining a sequence of lookup textures,

such that a different one is indexed each frame, it is possible to simulate dynamic

lighting effects, such as the flickering of fire.

Assarsson [ADMAM03] later improves on the algorithm even more, eliminating

artifacts and further optimizing the algorithm to take advantage of current graphics

hardware. Though the shadow volume and wedge generation is still done on the

CPU, the rendering is now all performed in pixel shaders, allowing frame rates

which are commonly around 50 for relatively complex scenes.

Just as the penumbra wedges algorithm was an extension of shadow volumes,

similarly Chan and Durand [CD03] proposed an extension to shadow mapping

that would permit the generation of soft shadows in 2003. Their method does not

focus on producing physically accurate shadows, and in fact it completely ignores

the shape and orientation of the light source. Instead it focuses on the generation of

perceptually “pleasing” shadows, using the distances between the light, occluder,

and receiver, to estimate believable penumbrae widths. They generate a set of

geometries, called “smoothies”, which surrounds the objects’ silhouette as seen by

the light, and is rendered into a “smoothie buffer”. Then, when rendering the scene

from an observer’s point of view, if a point should fail to fall into shadow from

the shadow map, a smoothie buffer lookup is performed to determine if the point

is in the penumbra. Because it has its roots in shadow mapping, the smoothies

algorithm does not model the size of the umbra accurately. It also does not handle
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non-polygonal shadow casting geometry, as it is necessary to find the silhouette

of the object as seen by the light in order to calculate the smoothie geometries.

In addition, the performance of the algorithm is directly correlated to the width

of the penumbra casting geometry. As a result, in environments where you would

expect to find large penumbrae, this method tends to perform poorly.

Another hardware-based approach to soft shadow generation built around the

shadow mapping algorithm was introduced by Wyman and Hansen [WH03] in

2003. They note that if you assume the shadow map approximates the umbra

region, then when looking at a scene from the point of view of the light, the entire

penumbra region is visible. Using this knowledge, they create a separate texture to

store the penumbral intensity throughout the scene as observed by the light. This

mapping of the penumbra intensities can be used in conjunction with the shadow

map to produce realistic soft shadows. They build on Haines’ plateau work [Hai01]

to construct the relevant penumbra geometry from a series of cones and connect-

ing planes. This algorithm has the ability to generate hardware-accelerated soft

shadows at frame rates roughly half that of standard shadow mapping. The in-

creased frame time is largely due to the computation of the silhouette boundaries,

a necessary step for projecting the penumbra geometry. This approach suffers from

the limitation that the umbra size does not shrink as the light radius grows. This

is because it relies on shadow mapping to determine the umbra boundaries, and

shadow mapping treats every light source as a point light. The method also makes

the assumption that silhouette boundaries are constant across the surface area of

the light.



Chapter 3

System Layout

The goal of our system is to merge live objects captured on video with synthetic

imagery, in real-time. We create a high level pipeline that is capable of deliver-

ing, theoretically, 15 frames per second. This systems provides the user with an

interactive experience as they work with our software.

Given the high level of computational complexity involved with geometric re-

construction, along with the goal of real-time results, the performance of our system

is a high priority. Throughout this chapter, we focus on the design and implemen-

tation of our hardware and software system. We describe the difficulties which

arise in trying to engineer a system that both captures geometry interactively and

also merges that geometry in a believable manner with a synthetic scene. We

justify the design choices that were made to assist in the future development of

similar systems.

29
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3.1 System Overview

The chain of events that our system performs can be broken down into eight

broad stages, each of which has its own set of design difficulties that need to

be addressed. A graphical illustration of the stages is shown in Figure 3.1. In

Figure 3.2 we list some of the challenges associated with each of the respective

stages. In stage one, each of the video cameras in our system must capture an image

of the physical object that we want composited. Then, in stage two, the frames

must be segmented into their foreground and background components. The next

step, stage three, is to blur the segmented images. This removes small holes and

smooths out the noise along the foreground/background boundaries. In stage four,

a contour finding algorithm extracts the silhouettes from the segmented image. The

foreground silhouettes later serve as input to the hull reconstruction algorithm.

The frame and contour data is passed across the network from the client machines

to the central server in stage five. This data is used in stage six to construct the

polyhedral hull. In stage seven, the hull is textured with the images captured from

the cameras. Finally, in stage eight, the composite of the virtual environment

and the reconstructed hull is rendered to the screen. Using this approach, we can

implement effects such as shadows and surface reflections between the real object

and the virtual background.

The remainder of this chapter will be organized as follows. First, in Section 3.2,

we will discuss our hardware setup, as well as the computing paradigm used within

our system. Then we will briefly describe each of the major system modules

referenced in Figure 3.1, with the exception of step six. Step six, the geometric

reconstruction algorithm, will be covered in detail in Chapter 4.
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Figure 3.1: The diagram above depicts each stage of the image processing, geo-

metric reconstruction and compositing process.
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Figure 3.2: The diagram above displays some of the challenges associated with

each stage in the algorithm.
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3.2 Hardware Setup

In this section, we describe the hardware infrastructure of which our system is

comprised. Further, we will discuss the client-server paradigm as selected for our

computing model, and how this architecture has affected our system.

3.2.1 Computer and Camera Specifications

We use four Sony DFW-X700 cameras to capture the foreground object. Fig-

ure 3.3 shows one of our cameras. The cameras have a half-inch CCD, and provide

progressive scan output at 15 frames per second up to a resolution of 1024x768.

Each camera is coupled with a 7.5mm fixed focal length c-mount lens. At this

focal length, we are able to capture a subject of approximately six feet in height

from a distance of four meters. Each camera is linked to a separate client com-

puter using the IEEE 1394 (FireWire) interface, supporting transfer speeds of up

to 400Mbps. At 15 frames per second and a resolution of 1024x768 (three channel

output), the maximum required bandwidth is 33.75 MB/sec, well below the upper

limit of 50 MB/sec, even in the most demanding scenario. Each camera has an

external trigger which allows for capture synchronization.

As previously mentioned, each camera is tethered to a separate client com-

puter that performs the necessary image processing operations on the captured

video frames. The computers are single processor 3.0GHz Pentium 4 machines

with 512MB of RAM and Gigabit Ethernet cards. These machines perform one

of the parallelizable steps in our processing pipeline. Specifically they extract the

foreground object from the image and find the line segments which define its sil-

houette. These tasks are highly computational in nature, thus making the CPU
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Figure 3.3: The image above shows a DFW-X700 camera and the trigger circuit

box.

the most critical component.

The client computers are networked to the server using Cat 5E crossover cables

which support Gigabit transfer speeds. The server has two two-port Intel 1000MT

Gigabit server cards which allow the four client machines to each have a direct con-

nection. The central server consists of dual 3.2GHz Pentium 4 processors with 2GB

of RAM and an NVIDIA Quadro FX3000 graphics card. The server is responsible

for the hull reconstruction, as well as the final hardware rendering and composit-

ing, including shadow generation using advanced vertex and fragment shaders. In

order to perform these tasks interactively, the server is required to have a high

performance graphics board in addition to raw processing power. A representative

image of our hardware configuration can be seen in Figure 3.4.
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Figure 3.4: The diagram above shows the hardware configuration as set up in

one of our test environments. The diagram also highlights each of the individual

components in our system.

3.2.2 Client-Server Model

Many of the fundamental algorithms associated with geometric reconstruction and

image synthesis are highly computational in nature. The goal of our project is

to integrate these two areas into one encompassing system which is able to main-

tain interactive frame rates. This requires that we collimate as much of the work

as possible. In order to achieve this parallelization, we implement a client-server

model that distributes the workload across a networked array of computers. Each

of the video cameras is attached to a separate client computer that performs the
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necessary image segmentation and contour finding operations. After this process-

ing is performed, the client computers send the silhouette data and video textures

across the network to the server. The geometric reconstruction occurs on the

server. At the same time as the client computers are sampling the cameras and

matting out the foreground object from the greenscreen, the Real Time Global

Illumination (RTGI) system is running on a separate cluster of computers for

background image generation, and the server is generating the polyhedral model

from the previous frame. By pipelining these three disparate actions, we attempt

to maximize the throughput in our system, and minimize the time spent waiting

for other processes to complete their task. Since this is a pipelined system, there

is an associated startup cost in processing, which results in a latency of one frame.

3.3 Image Capture

As shown in Figure 3.1, the first step in our system is to capture an image of

the foreground object from each of the video cameras. This section covers camera

calibration, the synchronization of the cameras, and the control of the cameras’

internal and external parameters to achieve the best image quality and cleanest

foreground segmentation. We also describe the techniques used to maintain a

consistent lighting environment for capturing foreground geometry.

3.3.1 Camera Calibration

A fundamental requirement of the reconstruction algorithm is knowing both the

position and the orientation of the cameras in relation to each other within a

globally defined reference frame. These are known as the extrinsic parameters
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of the camera. The intrinsic parameters, namely the principal point and focal

length, must be discovered through calibration as well. The principal point is the

location where the principal axis intersects the image plane. The principal axis

is the line passing through the camera center that is perpendicular to the image

plane. To calibrate the cameras, we used the “Camera Calibration Toolbox for

MATLAB” 1. This is illustrated in Figure 3.5, which shows both our captured

images and the MATLAB interface used to process them. To begin the calibration

procedure, we placed a checkerboard pattern within the scene such that each of

the four cameras had a clear view of the entire surface. We then captured a

frame from each camera, and used those as input to the calibration routine. The

calibration process, which uses Zhengyou Zhang’s technique [Zha00], returns the

grid reference frame with respect to each of the four cameras’ reference frames.

Since we desire the relationship that exists between the cameras, we convert each

camera frame to being dependent on the grid’s frame, so that the grid contains

our global orthonormal basis. More details on how this was done can be found in

the camera calibration section of the appendix, Appendix A.

3.3.2 Trigger Synchronization

It is imperative that each of the input images used for hull generation is captured

at the exact same instant in time because the reconstruction algorithm operates

by taking the intersection of the “silhouette cones”. A silhouette cone is defined

by an apex, which is located at the camera center, and the extrusion of the polyg-

onal object silhouette away from the camera center to infinity. If the images are

1The Camera Calibration Toolbox for MATLAB can be downloaded at the
URL: http://www.vision.caltech.edu/bouguetj/calib doc/
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Figure 3.5: The image above displays an example screenshot of the MATLAB

camera calibration toolbox interface.

captured at even slightly varying instances in time, then the silhouettes could

potentially represent very different poses of the foreground object (assuming the

object is moving). The intersection of these extruded silhouette cones would not

accurately reproduce the original model at any of the different time steps, but

would most likely appear as indiscernible noise, containing geometry only where

the poses happened to overlap in space. To prevent this degenerate scenario from

occurring, the server is responsible for triggering each of the cameras simultane-

ously in the main loop of the program, ensuring that the sampling is consistent

at each time step. The server drives the trigger circuit by outputting signals on
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the serial port, COM1. For implementation details concerning our use of the serial

port as well as our trigger circuit design, refer to Appendix B.

3.3.3 Use of DirectShow for Camera Control

In order to establish software communication with the video cameras, we took

advantage of the DirectShow interface, a component of Microsoft’s DirectX 9 mul-

timedia suite. DirectShow allows for the configuration of a filter graph to manage

the flow of data from the camera capture device to the user’s program. DirectShow

also provides an interface for setting such camera parameters as white balance, ex-

posure, video capture format, and the active state of the external trigger. Our

camera control software, which runs on each of the four client computers, uses the

DirectShow interface to adjust the color balance of the incoming image in order to

achieve optimal greenscreen results.

3.3.4 Whitebalance Control

To improve the results of the image segmentation process, the whitebalance on the

camera should be adjusted. By slightly strengthening the red and blue channels

it is possible to remove the excess color bleeding from the greenscreen that occurs

on light-colored surfaces. Alternately, by decreasing the red and blue channels

it is possible to compensate for shadows on the backdrop which leave parts of

the greenscreen marked as foreground. Decreasing the red and blue channels will

make the greenscreen surface appear more green, and thus can lead to less noise

and better results. Figure 3.6 illustrates these effects. Making this trade-off in color

balance is a subtle art, as it is important that the captured image appear as natural

as possible while remaining easy to segment cleanly. To maintain consistency,
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Figure 3.6: The figure above shows a series of different color-balance adjustments,

and the effect that each setting has on the segmented image.

the program saves a configuration file that documents the last used whitebalance

values. These settings are then re-loaded the next time the program is started.

Similarly, values for the matte strength, blur threshold, and other camera-related

parameters are also stored and loaded.
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3.3.5 Scene Lighting

The lighting of the foreground object and the greenscreen is an important factor

in determining the quality of the image segmentation and the resulting silhouette

contours. Ideally the greenscreen would be placed at infinity, so that there would

be no interactions between it and the foreground subject. Allowing the subject

to be too close to the greenscreen often results in color bleeding, where parts of

the foreground object, most notable the edges, take on a greenish tint due to light

that is first been reflected off the screen and then bounced off the subject. Another

situation that can lead to problems is when the foreground object casts shadows

on to the surface of the greenscreen. This can be problematic because the darker

shadowed regions of the background are often misinterpreted as foreground. The

way we addressed these issues was to place several 500 watt halogen lamps in

a semicircle configuration around the object acquisition area. Our goal was to

simulate a diffuse environment where light was coming from all directions, and

thus eliminate any hard shadows.

3.4 Image Segmentation

After an image has been captured from each of the video cameras, the next step is

to segment the foreground from the background. In this section we will cover the

initial foreground matting, as well as the subsequent Gaussian filtering operation

that we use to eliminate high frequency noise.
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3.4.1 Foreground Matting

After the cameras have been triggered and a frame returned, the next step is to

segment the image into its foreground and background components. We borrow

the method employed by Selan [Sel03] for performing this operation. If a pixel’s

green channel value is higher than the maximum of the red and blue channels by

a preset margin then the pixel is marked background. This amount, termed the

“matte strength”, is a variable that can be adjusted in the software. If, conversely,

the green channel is not significantly larger than both the red and blue channels, or

if the pixel is extremely bright, with a combined channel value over some predefined

threshold, then it is marked as foreground. When performing segmentation, we are

only concerned with the region of the image that corresponds to the greenscreen

(a subset of the entire image). The bounding box which defines this region of

interest, or ROI, can be set in our software. Any pixel which falls outside this area

is automatically marked as background and set to black in the segmented image.

Figure 3.7 shows the greenscreen backdrop for our image acquisition area.

3.4.2 Gaussian Blurring and Thresholding

The segmented foreground image is often plagued by noise, due to the imprecise

nature of the scene lighting and the image sensing device, as well as the non-

homogeneous color of the greenscreen. As discussed in Section 3.3.5, areas of the

foreground that suffer from heavy color bleeding often have a greenish tint, and

are therefore erroneously marked as background. Conversely, areas of the back-

ground that receive heavy shadowing are often not recognizably green, and are thus

deemed foreground pixels. Inaccurately labeled pixels are also common where the

greenscreen meets the floor, as the corner is usually dark, and around perturbations



43

Figure 3.7: The figure above shows the greenscreen that was used for segmenting

out foreground geometry. The white box outlines the image acquisition area, where

the four cameras’ fields of view overlap.

in the greenscreen fabric or areas where the lighting undergoes sharp transitions.

We attempt to minimize these problem areas through physical means, however, it

is difficult to eliminate them completely. We also rely on software techniques to

aid in the image segmentation process. One way we alleviate noise is by convolving

the segmented image with a Gaussian filter. Our Gaussian filter implementation,

which takes advantage of dynamic programming techniques, makes multiple passes

over the image in both the horizontal and vertical directions, each time convolving

the image with a box filter. We have found empirically that a Gaussian sigma

value between two and four works relatively well for removing the noise in our

captured images.

After the image has been blurred, each pixel has a grayscale value between
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0 (black) and 255 (white). The next step is to perform a threshold operation,

such that pixels which contain a value above the threshold are marked foreground,

or white, and those pixels with a value below the threshold are differentiated as

background, or black. This threshold value is a variable in software, and can be

adjusted as necessary for optimal segmentation.

3.5 Contour Finding

The fourth stage in our system is to find the contours that approximate the object’s

shape. This section will discuss how we recover the silhouettes from the segmented

images, and a noise elimination approach that we use to prune away unwanted

contours.

3.5.1 Polygon Approximation

After the image has been segmented into foreground and background regions, the

silhouette contours that define the foreground object are extracted. This is done

using Intel’s open source computer vision library, OpenCV. We use the routine

cvFindContours() , which uses an algorithm similar to that of marching squares

in order to find and return the contours in a binary image. The contours that

the algorithm recovers are initially very fine in resolution, such that each edge

only spans neighboring pixels. To adjust the granularity of the contours, stringing

together short edges in order to produce more representative line segments, we

leverage the function cvApproxPoly(), which takes as input the original contours

and a constant that denotes the desired level of contour resolution. The higher the

constant, the more coarse the final contours will be. A value of zero returns the
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original contours with no change in granularity.

There is a trade-off to be made when using this routine. The higher the value,

the fewer the line segments there will be. This will result in less data, lower network

transfer times, and a quicker hull reconstruction process. However, the disadvan-

tage is that the geometry is less refined. For example, when finding the contours of

a hand, if the polygon approximation factor is set too high, the individual fingers

will be lost and the hand will appear as a single polygon. If the approximation

factor is set too low, then the contour definitions will be more detailed but the

running time of the hull intersection routine will be much higher. This is a direct

result of the fact that there are now many more surfaces on which to perform

polygon intersections. The goal is to find a balance such that the contours are of a

high enough resolution to generate visually pleasing models and yet low enough to

maintain interactive frame rates. One proposed solution, employed by Matusik et

al [MBM01], is to have the approximation factor adjusted on the fly in software.

The contour resolution is decreased automatically when the program slows down,

and increased when there are extra cycles to devote to the mesh generation pro-

cess. In our system, the variable is user driven, as opposed to software controlled,

and can be adjusted on the fly to match the user’s current desire.

3.5.2 Noise Elimination

Despite our effort to eliminate noise at the segmentation stage, there are still

occasionally incorrectly marked pixels that bleed into the contour finding routine.

To counter this, we automatically throw away any contour that consists of three

or less edges. No reasonable foreground object would be so nondescript, and thus

we have found this to be a relatively successful way of removing background noise
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from the contour detection process.

3.6 Data Transfer to Server

In order for the server to reconstruct, and later texture, a model of the foreground

object, it must acquire the necessary contour and image data from each of the

client machines. This is the fifth step in our system overview diagram, Figure 3.1,

and will be the topic of this section.

3.6.1 Network Protocol and Region of Interest

After the silhouettes have been extracted from the segmented image, a buffer is

constructed that stores all the relevant data the server will need to compute the fi-

nal polyhedral hull. Instead of sending the entire video frame to the server, which is

later used for texturing the constructed hull, we only send the region that contains

the foreground object. By minimizing the amount of data transferred between the

client and server, the transfer times and the bandwidth consumed are also opti-

mized. To determine the minimum bounding extent of the foreground object, we

iterate through the line segments which define the contours and keep track of the

minimum and maximum (x,y) points. These two points constitute a bounding box

that encompasses any pixels potentially required during the texturing stage. The

pixels inside this region of interest, along with the contour definitions, are then

sent across the network. All our network communication is done over sockets, us-

ing the winsock library that comes standard with the Windows operating system.

Figure 3.8 shows the hardware configuration of our system, and Figure 3.9 shows

both the utilized and theoretical maximum bandwidth between each component.
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Figure 3.8: The diagram above shows the hardware configuration in our system.

3.6.2 Use of Compression

In order to reduce the transfer times between the client computers and the server,

we experimented with compressing the data before sending it over the socket.

We used the zlib compression library for our testing 2. Unfortunately, the time

required to compress and decompress the data was more than the time saved in

transmission. This may not be true for all forms of compression (for example the

JPEG algorithm might prove faster), or for all data set sizes. However, we have

currently settled on sending the data in its raw form.

2The zlib library can be downloaded at the URL: http://www.gzip.org/zlib/
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Figure 3.9: The diagram above displays our system’s utilized and theoretical data

transfer rates.

3.7 Texturing the Polyhedral Hull

After the hull has been reconstructed, as covered in Chapter 4, the next step is

to texture the model using the original video frames. In this section, we review

our initial naive texturing approach. For a discussion of the advanced techniques

implemented, we point you to the thesis of Adam Kravetz [Kra04].

3.7.1 Naive Texuring Method

The source textures for the polyhedral hull are always comprised of the original

video streams. In our naive texturing implementation, the process of selecting the
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optimal video image for texturing a hull surface reduces to a question of visibility

and orientation. In the best case scenario, each vertex to be textured would cor-

respond directly to a pixel from the set of video images. It is unlikely, however,

that this will be the case. Therefore, we attempt to find the nearest match. The

correctness of a match is quantified by the dot product between the viewing vector

and the surface normal. The dot product indicates the cosine of the angle between

the the two vectors, and thus we seek the smallest dot product for each surface.

Ideally, the vertex has an exact match, and the vectors are directly opposing, re-

sulting in a dot product of negative one. Using the aforementioned technique, we

compute the visibility between each reference camera and hull surface pair. We

then use the video frame from the camera with the best viewing angle for texturing

that particular surface. Figure 3.10 shows an example hull surface and the camera

that our naive algorithm would select for texturing the face.

3.8 Foreground and Background Compositing

The final stage in our system is to merge the reconstructed foreground object with

the background environment. It is at this point that we add in global illumination

effects, such as shadows and reflections, to enhance the plausibility of the compos-

ite. This section will focus on the method by which we generate our background

images, as well as the compositing process. The shadowing technique that we de-

veloped for our system is discussed in detail in Chapter 5, and our implementation

of reflections is covered in [Kra04].
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Figure 3.10: The optimal camera for texturing a hull surface is the one whose

viewing vector has the most opposing angle to the surface normal. In the diagram

above, Camera 2 would be the best choice, as it has the most direct view of the face.

3.8.1 Background Image Generation

RTGI is the Program of Computer Graphics at Cornell’s “Real Time Global Illumi-

nation” system. It is a ray tracer that is designed for both interactive walkthroughs

and the rendering of static scenes. The RTGI system can render in many different

modes, each having varying levels of quality and performance; however, these op-

tions are all transparent to our system. As far as our software is concerned, RTGI

is a “black box” that feeds it background images for compositing with our cap-

tured geometry. RTGI can be run in one of two modes, on a single client computer

or in walkthrough mode, which takes advantage of the PCG’s 128 CPU cluster 3.

When running in walkthrough mode, the pixels are distributed among each of the

3The cluster consists of 64 computers, each with dual 1.7GHz processors and
1GB of RAM.
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machines, so that you can add secondary effects such as indirect lighting while

still achieving interactivity. Although the RTGI system can handle an arbitrary

number of light sources, our compositing software currently only supports hard-

ware shadow generation for the primary light source in the scene. This allows us

to maintain user interactivity, as implementing hardware shadows from multiple

light sources requires additional rendering passes and texture lookups during the

shadow generation stage. As a result, we primarily deal with background environ-

ments that have a relatively small number of lights.

3.8.2 Information Sharing

There are several parameters which need to be synchronized between the RTGI

system and our software. These include the camera position and orientation, the

primary light source location, and the current background model used for composit-

ing. It is important to keep the cameras synchronized between the two systems,

so that if the user moves the camera within the RTGI framework, thus changing

the orientation of the background model with respect to the viewer, the captured

foreground geometry will be viewed from an identical pose. If this consistency is

not maintained, the alignment of the foreground object with respect to the back-

ground scene will be constantly changing – a highly disconcerting visual effect.

Therefore, in order to guarantee compatibility, the RTGI camera position, view

direction, up vector, field of view, and aspect ratio are transmitted to our software

each frame. Similarly, the main light source in the scene must also be in the same

position on both ends of the system. The RTGI environment allows the user to

modify the light positions on the fly, and consequently our software needs to be

made aware of such changes. This ensures that the hardware shadows cast by the
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foreground object will match the rest of the shadows in the background image.

Unfortunately, as it is beyond the scope of this project to attempt to re-light the

captured video frames, any changes to the scene lighting will not be incorporated

in the textures used to shade the foreground geometry. Thus the user must main-

tain a plausible lighting environment in which to insert the captured model. RTGI

is also responsible for which background model is currently in use, and it needs to

alert our software when a model transition is being made.

3.8.3 Hardware Compositing Process

When a background image is received from the RTGI system, it is loaded into

the color buffer on the graphics board. Our software stores a local copy of the

scene model, and the next step is to render this geometry into the depth buffer.

While the scene geometry is being rendered, the color buffer on the graphics card

is disabled for writing. This prevents the ray-traced background image, which we

previously loaded into the color buffer, from being overwritten with a hardware

generated version. Then the color buffer is re-enabled for writing, and the captured

foreground geometry is drawn. Because the depth buffer already has the scene

geometry at this point, the depths are composited correctly.

In lieu of having our program render the scene into the depth buffer, we also

experimented with RTGI forwarding along the depth data for the background

image. Since the ray tracer has already generated a depth value for each pixel in

the scene, it would seem logical to try and reuse this information by passing it

over the network to our reconstruction server. However, we found that the time

required to transfer the depth data across the network and load it into the z-buffer

on the graphics board was significantly longer than it took to render the scene in
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hardware. Furthermore, a copy of the scene model is required on the reconstruction

server for rendering shadows.

When performing shadow generation in our system, one needs to be able to

render the scene from the point of view of the light source, thus requiring a local

copy of the scene geometry. This might prove to be computationally prohibitive

when dealing with highly complex scenes, for example when there are multiple

polygons that exist within the space of a single pixel. Should this scenario ever

arise, it may prove advantageous to revert back to a system where RTGI passes

over the depth data for the generated background image, and then use a differ-

ent approach for shadowing. This would eliminate the need for the compositing

software to maintain a local copy of the scene model and would achieve a greater

separation of complexity.

3.8.4 Object Positioning

The software which we have developed allows the user to rotate, translate, and

scale the captured geometry so that it fits correctly within the scene. Exact posi-

tioning is necessary in order to create a convincing composite. Furthermore, the

scenes in which we are inserting the subject are often modeled using arbitrary

scales, uncorrelated to any physical units. In order to scale the model without also

affecting its positioning, we first determine the center of the object. We imple-

mented two different methods for computing the center of the object. The first

approach is to use the average position of all the points which define the object’s

hull, which approximates the centroid of the object. The second approach is to use

the center of the bounding box which surrounds the geometry. The later method

has proven to be the better of the two, as the exact positioning of the vertices which
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define the hull are constantly changing due to slight variations in image intensity

and numerical imprecision during the reconstruction processes. Using the former

method, the centroid shifts slightly each frame, and consequently the model skips

around within the scene. This motion is highly disconcerting, and detracts from

the realism. The bounding box method is less affected by the inherent noise which

plagues the individual vertex positions. The temporal variation is much less, and

consequently the jittering of the object within the scene is also drastically reduced.

Finally, to position the foreground object within the scene, it is first translated

such that its center is situated at the origin. The object is then scaled up or down

to the user-specified size and then translated back to its original location.



Chapter 4

Reconstruction

4.1 Geometry Reconstruction

At the very core of our system, around which the entire compositing infrastructure

is built, is the geometric reconstruction algorithm. In order to create the illusion

that a physically disparate foreground object is an integral part of a synthetic

environment, it is highly advantageous to know the object’s approximate shape.

Even with limited geometry, there exists the potential to create much more accu-

rate composites than would be possibly with only a 2D representation. With a

3D model, occlusion testing can be performed between the foreground and back-

ground, and it becomes possible to cast physically-based shadows both from and

onto the reconstructed hull. The remainder of this chapter describes the algorith-

mic approach that was used to reconstruct the shape of an object based on its

silhouette contours as seen by several reference cameras.

55
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4.1.1 Epipolar Geometry

The polyhedral visual hull reconstruction algorithm, developed at MIT by Matusik

et al [MBM01], has its foundations in epipolar geometry. Epipolar geometry is

a way of relating the views of two cameras at different locations, and is useful

for making correspondences between these pairs of images. The only information

necessary to begin realizing these relationships is the intrinsic parameters of the

cameras as well as their pose in world space. When dealing with a single camera,

there is no way to determine exactly where in world space a point on the image

plane lies. A point on the image plane could represent an infinite number of

locations in world space, all of which lie along the ray formed by back projecting

the image point through the camera center (see Figure 4.1). This information

proves useful when making correspondences between multiple cameras, as it can

be seen that a point in the first camera’s image plane is restricted to a location along

the back projected ray as seen by the second camera. Thus the search space for

making image correspondences is drastically reduced. Instead of having to search

the entire second image for the corresponding point, the search can be limited to

a single line of pixels on the image plane. This relationship between points in one

image and lines in a second image is expressed through the fundamental matrix.

l′ = Fx

F = Fundamental matrix relating the cameras

x = Point in the first camera’s image plane

l’ = Line in the second camera’s image plane

The search line generated above is referred to as an “epipolar line” because it

is guaranteed to run through the epipole. The epipole is the image of the first
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Figure 4.1: In the figure above, we see that a point in the first image plane becomes

a line when projected on to the surface of the second image plane.

camera in the second camera’s image plane. One way to think of the epipole is the

point where the baseline, the line connecting the two camera origins, intersects the

image plane.

When configuring the pose of the cameras in a scene, it is critical that the

baseline pass through the image plane in the proper location. An example of a valid

configuration is shown in Figure 4.2A. There is a degenerate case which can arise

when the cameras are not facing each other that results in the epipole inaccurately

describing the remote camera’s location. This is illustrated in Figure 4.2B, where

the second camera is led to believe that the first camera is on its right, when in
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reality it is positioned on its left. Because of the fact that all the projected epipolar

lines run through the epipole, lines on the image plane can be classified based on

the angle they make against a reference line. This plays an important part in the

hull reconstruction algorithm discussed in Section 4.1.3.

Figure 4.2: (A) A valid camera configuration with the epipoles correctly iden-

tifying each camera’s location. (B) An invalid camera configuration whereby the

second camera believes the first camera to be off to its right.

4.1.2 Visual Hulls

When looking at an image of a single object, there is no way to determine the

size of that object. It could be infinitely small and positioned directly in front

of the lens, or it could infinitely large and located a great distance from the lens.

What is known is the fact that if the silhouette of the object in the image plane

is extruded from a point at the camera center out to infinity, the object would lie

completely within that space. The cone whose apex is the camera center, whose

shape is defined by the silhouette of the object, and whose direction of extrusion

is the vector along which the camera is looking, forms the visual hull of an object

when dealing with a single camera. This cone is the minimum bounding volume
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which guarantees that the object is completely inside of it.

Now consider the case where there are two cameras. The result is two bounding

volumes, each of which completely encapsulates the object. Each bounding vol-

ume is a cone starting at its respective camera center and extruding through the

silhouette associated with that camera. Given that the two cameras are looking at

the same object, the object must be contained within the intersection of the two

extruded cones. As is expected, the region of intersection of the two cones is going

to be a much smaller volume than that of either of the two original cone volumes,

assuming the cameras have sufficiently varying poses within the scene. Each ad-

ditional camera/cone pair acts as a “cookie cutter”, confirming those regions in

space that it agrees are valid portions of the object, and pruning away those areas

in which it can definitively say the object does not exist.

Figure 4.3: The figure above shows the intersection of four silhouette cones that

were used to generate the polyhedral visual hull of a teapot.
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When intersecting the silhouette cones of multiple cameras, ambiguities can

arise. For example, compare the original and reconstructed objects in Figure 4.4

to those in Figure 4.5. In the first case, the intersection results in the proper

reconstruction of the single cylinder. In the second case, however, ambiguities

arise concerning where two cylinders are located within the scene. There are

multiple solutions that would satisfy the silhouette cone constraints, and result

in the reconstruction of four regions instead of two. These ambiguous cases are

reduced with each additional camera added to the system.

Figure 4.4: The figure above illustrates the unambiguous reconstruction of a single

cylinder from two silhouette cones.
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Figure 4.5: In the figure above, there are multiple solutions that satisfy the silhou-

ette cone intersections. These ambiguities can be eliminated by adding additional

cameras to the system.

4.1.3 Polyhedral Visual Hull Overview

Matusik’s polyhedral visual hull algorithm [MBM01] is a way of creating an explicit

three dimensional model by performing the silhouette cone intersections in two di-

mensions. This technique eliminates the complexity of performing the intersections

in three-space (using CSG, for example) by leveraging the image correspondences

that epipolar geometry provides.

Each edge in each silhouette image represents a plane in world space. This

can be seen by recalling that a back projected point on the image plane produces

a ray in world space. Thus the two image plane points which define a silhouette
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edge will result in two world space rays that define the boundaries of a world space

plane. The projection of this plane on to another camera’s image plane can be

achieved through the use of the fundamental matrix. Using the epipolar geometry

previously discussed, the two vertices which define the silhouette edge on the first

camera’s image plane can be multiplied by the fundamental matrix which relates

the two cameras to produce two lines which run across the second image. These

lines represent the projection of the edges of the world space plane, formed by

back-projecting the silhouette edge, on the second camera’s image plane. When

the projected lines are intersected with the second image’s silhouette, the resulting

two dimensional region on the image plane corresponds to a surface of intersection

on the world space plane formed by the first camera’s back-projected edge. This

can be seen in Figure 4.6. By projecting the region into world space, such that

it lies on the first camera’s edge plane, and intersecting it with the other regions

created by projecting the same silhouette edge on to each of the other cameras’

image planes, one is left with a surface on the final hull. The hull consists of

the summation of all such surfaces that are created by projecting each silhouette

edge in each image on to each other image plane. An example hull is displayed

in Figure 4.7, where the polyhedral hull surfaces are shaded according to which

camera in our four camera configuration generated that face.

4.1.4 Edgebin Creation

The “edgebin” data structure [MBM01] is the means by which the polyhedral

visual hull algorithm quickly intersects the projected lines with the current image’s

silhouette. Each vertex in the object’s silhouette is assigned an index value based

on the slope of the line connecting that silhouette point to the appropriate epipole.
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Figure 4.6: In the figure above, a silhouette edge in Camera 0 is projected to epipo-

lar lines in Cameras 1-3. These lines are intersected with the foreground silhouette

from each camera, forming the shaded regions shown in pink. The intersection of

these shaded regions in world space forms a surface on the polyhedral visual hull.

The vertices are then sorted in ascending order based on their index values. The

next step is to create a series of bins that span the index values from negative

infinity to positive infinity. The first bin is defined as spanning from negative

infinity to the first index value, the second bin spans from the first index value to

the second, continuing in a similar fashion until the last bin is reached which spans

from the highest index value to positive infinity. Each bin then stores a list of all
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Figure 4.7: In the figure above, we see the surface contributions from each of the

four reference cameras used to produce the polyhedral visual hull.

the edges whose start and end indices overlap the values that define the bin. Once

the edges have been placed in the appropriate bins, the edges within each bin are

sorted based on their distance from the epipole. This permits the traversal of the

edges in a sequential fashion, moving from the epipole outwards across the image

plane.

4.1.5 Polygon Generation

After the edgebins have been established, the edges in the first camera’s silhouette

are projected on to the second camera’s image plane. Each projected edge creates
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two lines on the second image plane, and the index values for those two lines are

computed. The next step is to select the line with the lower index value and

determine which edgebin the line’s index would fall in. Once the appropriate

edgebin is found, the line is intersected with each edge in the bin by taking the

cross product of the two lines in homogeneous form. The intersection points are

added in turn to the intersection polygon. Then the algorithm iterates through

the bins in sequential order, adding each bin’s starting vertex to the intersected

polygon, until the bin that spans the second projected line’s index value is reached.

At that point the second projected line is intersected with each of the edges in the

bin, and those points are added to the intersection polygon as well. Recall that

each two dimensional intersection polygon on the second camera’s image plane

represents a region in world space on the plane formed by back-projecting the

first camera’s active silhouette edge. To calculate that world space region, the

points which define the intersection region on the second camera’s image plane

are back-projected to rays which can then be intersected with the the relevant

plane. A plane can be defined by three points. In this case, the three points which

constitute the plane are the first camera’s origin and the two points on its image

plane which define the active edge. For example, the plane might be defined as

shown in pseudo-code below:

// First point defining plane

planePoint1 = camera1.origin;

// Second point defining plane

tempPoint = (silhouette[edge].point1.x, silhouette[edge].point1.y, camera1.focalLength);

planePoint2 = (camera1.rotationMatrix * tempPoint) + camera1.origin;
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// Third point defining plane.

tempPoint = (silhouette[edge].point2.x, silhouette[edge].point2.y, camera1.focalLength);

planePoint3 = (camera1.rotationMatrix * tempPoint) + camera1.origin;

Likewise, each of the rays that are to be intersected with the plane can be defined

as passing through the second camera’s origin and the corresponding intersection

point on the image plane. Note that in both the case of creating a plane or creating

a ray, we are using the focal length of the camera as the z-value for the image point

in world space. This is appropriate because the units in this situation are irrelevant

– it is the ratio that’s important, and our focal length is specified in pixels, as are

the edge and intersection coordinates. Each of the rays can be formed as such:

// First point defining ray

rayPoint1 = camera2.origin;

// Second point defining ray

tempPoint = (intersectionPt.x, intersectionPt.y, camera2.focalLength);

rayPoint2 = (camera2.rotationMatrix * tempPoint) + camera2.origin;

It is important to realize that when using image plane coordinates as world space

values, such as we do above, they need to first be adjusted so that the coordinate

(0,0) is at the center of the image plane. To take this into account, simply subtract

the principal point from the intersection coordinate before performing the world

space conversion.
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Figure 4.8: The figure above shows two of the four cameras used to reconstruct

the teapot model. An edge in Camera 1’s silhouette is being projected on to Camera

2’s image plane. The regions of intersection are shown in pink. On the left, the

intersected regions have been back-projected on to Camera 1’s edge plane (light

blue). These regions are then intersected with the regions from each of the other

reference cameras (not shown) to produce the final polyhedral hull surfaces (dark

blue).
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4.1.6 Polygon Intersection

After each edge from each silhouette has been projected on to the image plane of

all of the other cameras, and the 2D regions of intersection have been reprojected

on to the edge planes in world space, what remains is a collection of polygons,

of size one less than the number of cameras, associated with each of the edges in

each of the silhouettes. The intersection of each of these sets of polygons defines

a single surface on the object’s polyhedral visual hull. To find the intersection of

these polygon sets, we use the General Polygon Clipping (GPC) library 1. This

library can take two arbitrary polygons as input and return the polygon that

defines their region of intersection. To handle the case of intersecting more than

two polygons, we intersect the first two, and then use the resultant as one of the

input polygons for a subsequent iteration. The library also contains routines for

converting polygons to triangle strips, which is how we have chosen to render the

final mesh.

4.1.7 Watertight Meshing

In the original polyhedral visual hull algorithm as presented by Matusik [MBM01],

the generated meshes are not guaranteed to be free of holes, or “watertight”. Sim-

ilarly, in our implementation, the polygon intersection is done on a per face basis,

and as a result, there is no connectivity information maintained between adjoining

surfaces on the visual hull. Due to inaccuracies in the camera calibration process

and the inherent numerical imprecision of the polygon intersection routine, vertices

which define the coincident edges of adjacent triangle strips are not always colin-

1The GPC library is an open source intersection library that can be downloaded
at the URL: http://www.cs.man.ac.uk/aig/staff/alan/software/gpc.html
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ear. As a result, holes arise in the object’s suface where the polygon boundaries are

not perfectly aligned. When compositing the captured geometry with a synthetic

background, these holes on the model surface become highly disconcerting visual

artifacts that allow the viewer to see the background through the object and de-

tract from the image’s realism. In order to counter these effects, we attempted to

implement Franco and Boyer’s “Exact Polyhedral Visual Hull” algorithm [FB03],

which uses knowledge of local edge orientation to traverse the viewing edges and

build an exact hull which is both manifold and watertight. Unfortunately this

approach was problematic, as it proved to be highly susceptible to numerical im-

precision when computing line-line and line-plane intersections. We were unable

to implement a robust version of the algorithm, and were forced to consider other

alternatives.

The polyhedral visual hull is composed of the set of polygons formed by back-

projecting the contour edges in each image plane and intersecting them with the

other silhouettes. Thus two neighboring surfaces on the visual hull share the same

world space line, called a viewing line, formed by back-projecting the shared con-

tour vertex on the original image plane. In order to reduce the artifacts that arise

from our non-watertight mesh construction process, we threshold the final polygon

vertices based on their distance from this viewing line. If a polygon vertex is found

to be within a specified distance from the viewing line, then the point is moved

tangentially such that it lays on the line. This ensures that neighboring faces of

the final hull share the same boundary edges, without adding much overhead in

the form of computational complexity. The viewing lines have previously been

computed and stored, and the point-line distance calculation can be performed

relatively cheaply. To further reduce the complexity, we compute the distance
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Figure 4.9: The figure above illustrates the image quality that can be expected

before and after our vertex thresholding operation. After the thresholding has been

performed, the number of visible artifacts has been drastically reduced.
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squared as opposed to the actual distance. This eliminates the need for taking a

square root. The result of our thresholding operation can be seen in Figure 4.9.

Although this method does not completely eliminate the problem, it does drasti-

cally reduce the artifacts. The downside to this approach is that fine geometry

has the potential to be collapsed to a single point if the thresholding distance is

not properly set. However, for a given camera configuration, with known scene

dimensions and camera resolution, the thresholding value can easily be adjusted

such that it does not erode the geometry. Figure 4.10 shows the reconstructed hull

of a person standing with one foot on a ball.

Figure 4.10: The figure above shows a side-by-side comparison of a person stand-

ing with one foot on a ball and their reconstructed polyhedral visual hull.



Chapter 5

Shadow Effects

Our system was designed with the intent of merging physical objects with computer

generated imagery. We want this merging process to include realistic effects, such

as shadows and environment inter-reflections, both of which are important for

believability. Our two primary criteria are that the reconstruction and compositing

processes happen quickly, to facilitate an interactive real-time application, and that

the final output images are visually plausible. In this chapter we present a novel

approach to shadow generation that meets the unique demands of our compositing

environment while still abiding by the aforementioned principles. In keeping with

our goal of performance, the algorithm is designed to be executed on graphics

hardware, and our implementation only handles a single light source. To ensure

a high degree of realism, we use the generated hull to cast believable shadows.

We have opted for the production of soft shadows, acknowledging the fact that

this approach requires significantly more processing time than hard shadows. Our

approach is unique in that it prevents the foreground object from casting shadows

on to itself, and in doing so, it also minimizes the processing required to compute

the penumbra simulation.

72
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5.1 Unique Shadow Environment

In compositing the captured geometry with a globally illuminated background

scene, there are several unique considerations that our system must take into ac-

count. A primary consideration is that the captured video frames are subsequently

used to texture the reconstructed hull during the image generation process. These

textures were captured in a studio environment and inherently have effects of the

studio lighting contained within the image capture of the foreground’s surface re-

flections. The obvious difficulty which arises is that if the foreground object is

placed in a completely different lighting environment, the shading will not match.

One solution would be to attempt to remove these illumination effects. In order

to accomplish this feat, one would first need to determine both the lighting in the

scene and the material properties of the foreground object. Then a computation-

ally complex inverse global illumination algorithm would need to be run on the

video textures. Finally, the textures would have to be re-lit according to the the

new lighting environment. Because this does not lend itself well to an interactive

application, we have instead chosen to assume that there will be matched light-

ing between the studio capture environment and the virtual background scene.

Enforcing this consistency ensures that the video textures already contain similar

lighting for their new environment. A result of this observation is that when devel-

oping a shadowing algorithm for our system, we had to ensure that the foreground

object did not cast shadows onto itself a second time. The textures already in-

clude self-shadowing effects, and thus if we were to compute them again, we would

compound the shadows and make them darker than they should be.

We do, however, want the captured geometry to cast shadows onto the scene

in which it is being placed. These shadows are extremely critical in making clear
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the spatial relationships that exist between the foreground and background, and

how the lighting in the scene is positioned relative to both. It is also important

to reproduce the shadows that the scene would cast onto the inserted geometry.

We do not need to compute the shadows that the scene casts onto itself, as this

information is native to the background image that the RTGI system has generated.

Another constraint that is unique to our particular system is the fact that we are

lacking mesh connectivity information for our generated model. The reconstructed

hull is not a closed manifold, and not every edge in the mesh is shared by exactly

two triangles. Without this underlying structure, the process of determining the

shadow boundaries is a more complicated operation. Traditionally when silhouette

boundaries are required, for example when generating shadow volume geometry,

it is efficient to traverse the light/dark boundaries of the model and record those

edges as the shadow casting edges. However, this optimization is not possible in

our case. The mesh could potentially be cleaned up with a post-processing routine,

but the extra computation required to make these adjustments is prohibitive in

an interactive application. Instead we developed a novel approach for robustly

computing the outer shadow boundaries of an object as seen by the light source.

The technique does not capture internal shadow boundaries, and thus is well suited

for our application where we want to avoid self-shadowing. In the following sections

we will discuss our shadow-boundary detection algorithm, and how we interface

this with the Penumbra Map work done at the University of Utah [WH03].
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5.2 Shadow Mapping

Shadow mapping was first introduced as a flexible shadow-generation algorithm in

1978 by Williams [Wil78]. When using shadow mapping, the scene is first rendered

from the point of view of the light, and the depth value at each pixel location is

recorded. This depth image is referred to as the “shadow map”. In Figure 5.1, we

see the shadow map generated for a teapot model.

After the production of the shadow map, the scene is rendered from the view-

point of the virtual camera. As each fragment is rendered, its virtual camera

eye-space location is projected into the light’s clip-space. The necessary steps for

the space conversion are displayed in Figure 5.2. Here we can see that in order

to project the fragment into the light’s clip-space, we need to first multiply each

eye-space location by the inverse of the camera’s view matrix, and then multiply

it by the light’s view and projection matrices. The depth value of the projected

fragment in the light’s eye-space is then compared to the depth value stored in

the shadow map for that pixel location. If the projected depth value is less than

or equal to the value stored in the shadow map, then the fragment is the closest

surface to the light along that particular viewing ray. As a result, the fragment

is rendered as lit. If, however, the projected fragment is further from the light

than the shadow map value, then there must be an occluding surface between

the fragment and the light. The fragment is therefore in shadow, and is rendered

accordingly. The shadow map depth comparison is illustrated in Figure 5.3. On

modern graphics cards, this comparison can be accomplished in hardware as the

fragment passes through the graphics pipeline. In OpenGL, this functionality is

accessed via vendor-specific extensions. These extensions are described in Sec-

tion 5.3.2. The shadow mapping algorithm is designed to handle point lights, and
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Figure 5.1: In the figure above, a teapot has been rendered from the point of

view of the scene’s light. By using intensity values to represent distance, the figure

shows the generated depth image (shadow map), which will be used during shadow

computation. Darker regions of the image represent smaller depth values, where

the object is closer to the camera. Conversely, lighter areas indicate larger depth

values where the object is a greater distance from the camera.
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as a result, only hard shadows can be generated. In our system, we require that the

foreground object is able to cast soft shadows onto the surrounding environment,

so we use a variant of shadow mapping, called penumbra mapping.

Figure 5.2: The red arrow in the figure above represents the reprojection of pixels

in the camera’s eye space to the light’s clip space. This transformation is used

during rendering to compare fragment depths to those stored in the shadow map.

5.3 Penumbra Mapping

In order to generate visually plausible soft shadows at interactive frame rates, our

system makes use of the penumbra map algorithm [WH03]. Penumbra mapping, a
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Figure 5.3: The figure above shows two viewing rays. The fragment generated by

the first ray (red), is the same surface location stored in the shadow map. Therefore,

the pixel is lit. The second viewing ray (blue) hits a surface that is further from

the light than the fragment stored in the shadow map. As a result, this pixel is in

shadow.

method dependent upon shadow mapping, allows for the fast calculation of believ-

able shadows cast from area light sources. The algorithm relies on the principal

fact that when treating an area light like a point light, the entire penumbra region

cast by an occluder can be seen from the light’s point of view. Therefore a shadow

map can be used for calculating those portions of the environment that are in the

umbra, and a penumbra map can be used to determine penumbral intensity at
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a given surface location. A penumbra map is generated by constructing a set of

geometries around the shadow-casting edges in a scene, and rendering those ge-

ometries into a buffer as seen by the light source. Figures 5.4 and 5.5 illustrate the

construction of the penumbra map cone and sheet geometry. This process will be

described in detail in subsequent paragraphs.

Figure 5.4: Relevant dimensions used to compute the intensity stored in the

penumbra map [WH03]

The first step in the penumbra map algorithm is to generate a shadow map

by rendering the scene from the light’s point of view into a depth texture. The

shadow map serves a dual purpose, being used in both the computation of the

penumbra map as well as during the final rendering pass. For the final rendering,

however, we do not want the background environment to be able to cast shadows

on to itself. The environment’s self shadowing has already been computed by the

global illumination algorithms, and consequently we need to avoid compounding

the shadowed regions by subtracting the illumination twice. To handle this, after

we have used the shadow map to generate the penumbra map, we clear the shadow



80

Figure 5.5: The figure above shows the penumbra map cone and sheet geometry.

[WH03]

map’s values to white and then re-render the foreground geometry into it. This

prevents objects in the virtual camera’s view from projecting to behind the back-

ground geometry during the shadow map lookup. Since the shadow map is empty

except for the foreground geometry, during the final rendering only objects behind

the foreground model will be marked as in umbra.

After the shadow map has been generated, the next step is to determine the

contour of the foreground object as seen by the light. This topic will be covered

extensively in Section 5.3.3. Once we have the object’s contour, we can compute

the penumbra map geometry. The penumbra map geometry consists of a cone at

each silhouette vertex and a plane along each silhouette edge. The apex of each

cone is located at its corresponding silhouette vertex, and the base of the cone is

located on the camera’s far plane. The radius of the cone base is dependent on
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both the radius of the light source as well as the ratio of the distance between the

light and the silhouette vertex to the distance between the silhouette vertex and

the far plane. This mathematical relationship for computing the cone radius can

be expressed in the form:

Cri
=

(Zfar − Zvi
)Lr

Zvi

(5.1)

where Zfar is the distance from the light center to the far plane, Zvi
is the distance

from the light center to the silhouette vertex, and Lr is the light radius. This

relationship can be seen in Figure 5.4. In addition, Figure 5.7 displays example

penumbra map geometry as generated by our software for casting shadows from

a teapot model. Figure 5.8 shows the geometry in relation to the light’s view

frustum.

In order to render the cones using standard hardware techniques, the cone

geometry is decomposed into a triangle fan. The extent to which the cone geometry

is tessellated presents a trade off between the smoothness of the shadows cast

and the speed at which the algorithm runs. High tessellation leads to smoother

shadow transitions between adjacent planes at the silhouette vertices, however it

also results in increased fill rate and thus slower rendering times. Low tessellation

has the inverse effect: shadows render quicker, but at the cost of smoothness in

the penumbra.

The plane geometry is constructed based on each pair of adjacent cones. The

top two vertices for a given plane are located at neighboring cone apexes. Similarly,

the bottom two points which define the plane are also based on the cone dimensions.

The point on a cone base that is furthest from the light, along the direction vector

created by subtracting the light origin from the cone apex, is where a bottom vertex

on the plane is defined. These points on two neighboring cone bases provide the
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Figure 5.6: The figure image above shows the outer contour of a teapot as seen

by the light.

bottom edge of the connecting plane structure. See Figure 5.5 for an illustration

of this relationship.

5.3.1 Intensity Computation Using Cg

After the plane and sheet geometry has been generated, it is rendered into the

penumbra map. The penumbra map stores the penumbra intensity in a scene,

as viewed by the light. We implement Cg vertex and fragment shaders which

are run on the GPU to perform this intensity calculation. As the cone and sheet
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Figure 5.7: The penumbra map geometry consists of cones at each silhouette

vertex (blue) and planes along each silhouette edge (green). The figure above shows

an example of both coarse and fine silhouette resolution.

vertices pass through the graphics pipeline, the vertex shader multiplies each vertex

by the model, view and projection matrices to position the vertex in the light’s

clip space. It also passes along the distance from the light center to the cone

apex. The fragment shader is granted access to the shadow map, the screen width

and height, and the inverted texture matrix. When a fragment is received, the

shader calculates the penumbra intensity at that surface point. The equation for
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Figure 5.8: In the figure above, the penumbra geometry is shown to extend from

the foreground object contour to the far clipping plane.

computing the intensity is expressed as follows:

Intensity =
ZF − Zvi

ZP − Zvi

(5.2)

where ZF is the distance from the light center to the current fragment being pro-

cessed, Zvi
is the distance from the light center to the silhouette vertex, and ZP

is the distance from the light to the received surface. This relationship can be

seen in Figure 5.4. To generate ZF , the fragment shader takes the incoming frag-

ment depth (in the range [0,1]) and converts it back to the light’s eye space by

multiplying it by the inverted texture matrix. To compute ZP , the depth of the
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receiver surface, a lookup is performed on the shadow map texture, and then the

returned value is similarly multiplied by the inverse texture matrix to generate the

depth value in the light’s eye space. Once ZF and ZP have been calculated, it is

trivial to compute the intensity value. The generated intensity value is a linear

approximation of the shadow intensity between the umbra and fully lit regions of

the scene. In order to approximate a sinusoidal falloff, as is standard for a spherical

light source, the linear intensity value is run through the Bernstein interpolant:

s = 3τ 2 − 2τ 3 (5.3)

After the sinusoidal intensity value is computed, the Cg program stores the

fragment intensity value in the penumbra map texture for use during the final

scene rendering. Figure 5.9 displays an example penumbra map.

5.3.2 Use of OpenGL Extensions

Many of the operations related to shadow generation have been implemented in

hardware on modern graphics boards, primarily due to their recent popularity in

video games. When available, it is typically advantageous to make use of these

hardware features, often implemented as extensions to the standard API, as they

offer increased speed and efficiency over the software alternative. In some instances,

they even overcome severe limitations of trying to perform the operations manually

in software. In our system we rely upon several OpenGL extensions to facilitate

real-time performance.

In order to perform off-screen rendering, we make use of pixel buffers, or

pbuffers, on the graphics card. Pbuffers are additional non-visible rendering buffers

for an OpenGL renderer. Using pbuffers has several key advantages. First, it per-

mits images to be rendered at a resolution higher than that of the frame buffer
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Figure 5.9: The figure above displays a sample penumbra map. A penumbra map,

which displays the shadow intensity as seen by the light, is white outside of the

penumbra region and black at the contact points.

(and potentially even higher than the monitor will support), and secondly, it al-

lows one to render without having to worry about the pixel ownership test. In

OpenGL, if a window is not the foremost window on the screen, then that window

does not own the pixels inside of it, and rendering to those pixels is undefined.

This is referred to as the pixel ownership test, and it can lead to problems when

an occluded portion of a window has the potential to affect the rest of the screen.

Such is the case during shadow generation, where a partially occluded window will
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lead to an incomplete shadow map. The missing shadow map regions can later

lead to artifacts in the un-occluded portions of the screen, as pixels outside the

occluded area may well project to the missing locations during the shadow map

lookup. Pbuffers are also beneficial because they eliminate the need to render

everything into the frame buffer first and then perform an expensive read-back to

store the data in a different location. The extension that we use to implement our

pbuffers is “WGL ARB pbuffer”.

We also use “WGL ARB render texture”, OpenGL’s render to texture exten-

sion, to render the shadow map and penumbra map directly to a texture. This

eliminates the overhead associated with copying the image from either the frame

buffer or a pixel buffer to a texture. In order to create a texture that can store

depth values, as is necessary for the shadow map, we use the depth texture exten-

sion, “GL SGIX depth texture”. Using these extensions in conjunction with each

other, it becomes very easy to quickly render the scene into a depth texture which

can later be indexed during the shadow map lookup.

5.3.3 Computing Light/Dark Polygon Boundaries

In many shadow algorithms, including shadow volumes and penumbra mapping,

it is necessary to identify the boundaries between light and dark facing polygons.

If connectivity information is known, this can be achieved by iterating through

a mesh and comparing the visibility of neighboring surfaces. However, in our

system, the polyhedral visual hull is comprised of a set of disparate surfaces, each

of which is stored as a series of triangle strips for fast hardware rendering. There

is essentially no connectivity information known, and consequently we need to use

an alternative method.
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We have chosen to render the reconstructed object from the point of view of

the light, and then run a contour finding algorithm on the image. The silhouette

of the object as seen from the light defines the global shadow boundary that the

object casts on to its surrounding environment. This technique will not capture

self shadowing of the object; however, this is not an effect we desire, as the video

frame textures inherently have self shadowing effects built in. If we were to capture

these local shadows with our shadowing algorithm, then the shadowed regions

would become too dark, as they would be compensated for twice. The effects

of self shadowing are shown in Figure 5.10. Another benefit of only using the

object’s outer contour boundaries is that the minimum set of penumbra geometries

is created, and this reduces the computation time for generating the penumbra

map.

Figure 5.10: The figure above compares the output of an algorithm that generates

self-shadowing effects and our approach, which does not.

Our technique is similar to that proposed by McCool [McC00]. He renders an

object into the depth buffer and then uses the depth map as input to an edge

detection algorithm. By finding the edges in the depth image, he is able to recover
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Figure 5.11: Above, the silhouette of the foreground object (red) is shown as it is

seen by the light.

both the internal and external light/dark boundaries. This is required for his al-

gorithm, as he is concerned with self shadowing. Because we are only interested in

computing the extreme object boundaries, we perform the edge detection routine

on the stencil buffer as opposed to the depth buffer. The stencil buffer is like the

color or depth buffer except that the stencil pixels have application-specific mean-

ings. In our system, the entire stencil buffer is initially set to zero. Subsequently,

each time a fragment is written to the frame buffer, we increment the value in the

stencil buffer at that pixel location. In this way, after rendering the foreground
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Figure 5.12: Above is displayed the object’s silhouette contour (red) as seen by

the virtual camera.

object, the stencil buffer has a value greater than zero everywhere the object is

present. There are two primary advantages to working with the stencil buffer over

the depth buffer. First, it is faster to read back the stencil buffer than the depth

buffer, as the stencil buffer stores one byte per pixel, and the depth buffer stores

four. In addition, it is easier to find the contours in a binary image than in a

floating point depth image. By thresholding the stencil buffer, we are left with a

binary image that can quickly be parsed by OpenCV’s contour finding routine.

When determining the contours of the object as seen by the light, there is a
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trade off to be made with the contour’s granularity. With a fine resolution, the

number of edge segments will be higher, and the cone and sheet geometry will

become increasingly complex. On the other hand, a coarse resolution will result

in fewer edge segments but those segments will begin to deviate from the object’s

true edges. If used in conjunction with a shadow volume algorithm, this dispar-

ity would not be a large issue. The only consequence would be that the shadow

is either slightly larger or slightly smaller than the actual object, depending on

how the contour was approximated. This would most likely only be perceivable

near contact points or where the object is in close proximity to the surface be-

ing shadowed. However, when paired with the penumbra map approach, visually

displeasing artifacts can arise. In the penumbra map algorithm, a pixel is first

projected into the shadow map to determine if it is the foremost surface as seen

by the light at that location. If this is not the case, and the pixel projects to

a depth value larger than that stored in the shadow map, then the pixel is set

to black in the image, thus indicating it is completely shadowed. If the pixel is

not in complete shadow, then a lookup operation is performed on the penumbra

map to determine the pixel’s relative intensity. The artifacts surface where there

is a gap between the actual edge of the object and the edge retrieved during the

contour finding operation. As seen from the point of view of the light, any pixel

that lies between the object’s computed contour and its actual contour will result

in a bright spot in the shadow. This is because the pixel is outside the bounds of

the object, and thus is not marked as in umbra during the shadow map lookup.

Then, when the penumbra map lookup occurs, the pixel is inside the extent of

the contour, and thus will not be covered by the cone and sheet geometry built

around the silhouette edge. The result is the occasional pixel that is completely
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lit surrounded by pixels that are in shadow. See Figure 5.13 for an example.

Figure 5.13: Artifacts arise in the shadow when the silhouette extends outside

the object. The red line on the teapot indicates the silhouette boundary that was

used for the generation of the penumbra map geometry.

To eliminate the disparities between the actual silhouette and the calculated

silhouette, we devised a method for shrinking the borders of the object just slightly.

This has the effect that when the object’s silhouette is found, it is just inside the

object. Because the silhouette is contained within the object, the case where pixels

fall outside the object but inside the silhouette is eliminated. This removes the

artifact whereby fully lit pixels exist in the shadowed region. The shrinking of
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the object has to happen such that its borders push away from the rest of the

environment. For example, while the exterior boundary needs to contract slightly,

holes in the object actually have to expand by a small amount so that the boundary

is a bit inside the actual object silhouette. This effect cannot easily be achieved

in object space, so we perform an image space operation instead.

First the object is rendered from the light’s point of view, with the stencil test

enabled. The stencil test is configured such that the stencil buffer is incremented

each time a pixel is drawn to that location. In this manner, after the object has

been rendered, the stencil buffer has the value zero where the object is not present,

and some value greater than zero where the object is present. This portrays where

the object is seen in space by the light. The stencil buffer is read back and stored

in an array. The next step would be to run an edge detection algorithm on the

contents of the stencil buffer; however, first we perform our object-space silhou-

ette reduction routine. This function iterates over every pixel in the image and

determines if it is a silhouette border pixel. The criteria to be a border pixel is

that it must be non-zero, and consequently not part of the background, and it

must have a zero/background pixel as a neighbor. All of the border pixels are set

to zero, or marked as background. This effectively shrinks the silhouette of the

object by a width of one pixel all the way around. As a result, when we run the

contour finding algorithm, and use the returned silhouette to generate penumbra

map shadows, the shadows look natural and do not exhibit artifacts.
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Figure 5.14: The image above displays a teapot casting a soft shadow onto the

background environment. The camera was aligned with the light’s viewpoint for

this rendering.

5.4 Casting Shadows on the Foreground Object

There are several different methods that could be used to cast shadows on to the

foreground geometry from the background scene. One approach that we experi-

mented with involved using the RTGI system to perform direct lighting calculations

on the foreground pixels. This method was developed before we had access to the

scene geometry in our software, and we were relying upon the RTGI system to

provide us with a depth image of the background environment. The algorithm
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Figure 5.15: The image above displays a teapot casting a soft shadow cast on to

the background environment as viewed by the virtual camera.

consisted of first loading the RTGI-generated background depth image into the

depth buffer, and then enabling the stencil test and rendering in the foreground

geometry. Next, by reading back the stencil buffer, we were able to determine

which pixel locations corresponded to the inserted foreground model. At each

of these foreground pixel locations we would then query the graphics board for

the pixel’s depth buffer value. By taking the window’s (x,y) coordinate pair and

the depth buffer value, we unprojected each pixel and found the corresponding

(x,y,z) world space location. All of these world space locations, each of which
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corresponded to a point on the foreground object, were then packed together into

an array and sent across the network to the RTGI system. RTGI then performed

direct lighting calculations by casting a ray from each world space position to the

primary light source in the scene. Either a one or a zero was then returned to

our software for each location, indicating that it was either occluded, and thus in

shadow, or visible to the light source in the scene. Based on the returned values,

our software performed the necessary shading calculations in hardware.

This method proved to work well, but was slow for several obvious reasons. It

involved reading back data from both the stencil buffer and the depth buffer on

the graphics card, and read-back operations are notoriously cumbersome. Also, it

relied upon the network transfer of the world space locations, thus adding latency

into the system. In addition, the RTGI system had to perform ray-casting opera-

tions on each pixel location, which proved expensive if the number of foreground

pixels was large.

Once we transitioned our system such that the background model was available

to our software as well as RTGI, it became much simpler to cast shadows on to the

foreground geometry. By reusing the same shadow map that we used to compute

the penumbra map, we could quickly cast hard shadows on to the foreground object

as produced by the surrounding background environment. If we were to cast soft

shadows instead, we would need to find the silhouette edges for all geometries that

stand between the light and the foreground object. Using our modified penumbra

map algorithm, this would require many passes, reading back the stencil buffer,

depth buffer, and computing the silhouette for each background object in the scene.
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5.5 Scaling for Multiple Lights

Our current system configuration is not well suited to handling multiple light

sources. For each additional light source that we wanted to incorporate, a new

shadow map and penumbra map would have to be created. When dealing with high

resolution shadow/penumbra maps, this can quickly fill up the available graphics

memory. From a computational perspective, the calculations required to find the

silhouette contour and render the cone and sheet geometry for each light scale

linearly with the number of illumination sources. During the final rendering of

the scene, an additional lookup must be made into each shadow map and each

penumbra map, so once again the scaling is linear. In addition, the penumbra map

algorithm does not perform well when it comes to combining soft shadows. Each

shadow simply modulates the previous one by the new intensity, and this can lead

to visual artifacts where several soft shadows overlap. To avoid the aforementioned

complexities, we have configured our system to only handle a single light source.

As discussed in Chapter 7, future enhancements to our system could easily be

made to remove this restriction and increase the versatility of our software.



Chapter 6

Results

This chapter describes our system performance, both in terms of running time, and

in terms of the accuracy and visual quality of the final images generated. The chap-

ter is subdivided into three sections. In Section 6.1, we cover the performance of

our system, identifying the major modules, discussing the running time associated

with each module, and describing the existing bottlenecks. We also present some

ideas as to how the bottlenecks might be alleviated. In Section 6.2, we present

a study of the accuracy of the geometry that is reconstructed with our system.

Finally, in Section 6.3, we conclude with a sequence of composite images, allowing

the reader to determine for themselves the visual quality of our system’s output.

6.1 Performance

There are a variety of components that come into play when measuring the overall

performance of our system. This is complicated by the fact that many of the

operations are computed in parallel, and the complexity of each stage of the system

scales differently based on the number of cameras and the complexity of the object

98
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being captured.

Before any processing can be performed on the image data, the captured frame

must first be transfered from the video camera to its respective client computer.

This transfer operation is done over FireWire 400 cabling, which supports a band-

width of 400Mbps. As the camera has progressive scan output and is capturing

at a resolution of 1024x768, the size of each frame is 2.25MB. The transfer time

is therefore 0.047 seconds per frame, assuming optimal transfer speeds (see Fig-

ure 3.9).

The first algorithmic stage in our system consists of the image processing op-

erations that are executed on the client computers. Because we are using a single-

computer-per-camera model, the image segmentation and contour finding is done

in parallel on each of the client processors. As a result, this initial image processing

can be computed in constant time irrespective of the number of cameras. There

are, however, several factors upon which the performance of this section is depen-

dent. These include the image resolution, the projected area of the foreground

object on the image plane, and the specified Gaussian kernel size used to filter the

segmented image before the contours are found. The projected foreground area

is important because after the object of interest has been segmented, we perform

all further image processing operations, including the Gaussian filtering, on only

that subset of the frame. Thus there is a direct relationship between the projected

area and the amount of processing performed. Even at the cameras’ highest cap-

ture resolution, 1024x768, we are able to process each frame in under 1/20th of a

second, assuming a sufficiently small Gaussian kernel size, defined by the radius of

the Gaussian filter, and an object whose bounding box occupies roughly half the

image plane. If we disable Gaussian blurring, we are able to process each frame in
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roughly 1/40th of a second.

After the raw frame has been processed, the portion of the image containing

the foreground object and the contour data are transferred to the server. Each of

the client computers has its own direct Gigabit Ethernet connection to the server,

making transfer rates of up to 119.2MB per second possible. If we assume that

the image-space bounding box that contains the foreground object occupies 1/2

of the total number of image pixels, then the data being transferred to the server

is roughly 1.125MB, provided that the size of the contour data is negligible. This

results in optimal transfer times of 0.009 seconds per client computer. As we are

performing these transfers in series, the total transfer time would be 0.036 seconds

for all four client machines.

At the core of our system is the reconstruction algorithm which generates a

polyhedral mesh based on silhouette input. The execution time of the reconstruc-

tion algorithm is O(N2), where N is the number of cameras, as each contour edge

is projected on to each other image plane and intersected with that camera’s sil-

houette. In addition to the number of cameras, the performance is also affected by

both the complexity of the object and the resolution used when estimating the fore-

ground contours. In our distributed four camera configuration, the reconstruction

process takes roughly 0.04 seconds for a humanoid object. Table 6.1 displays the

timing results for the reconstruction of a teapot model. To ensure that each run

of the system was deterministic, we used synthetic input data for these time trials.

In addition, all the processing was conducted on a single computer, as opposed to

our distributed system.

Another component that influences the execution time is the creation of the

penumbra map in hardware. While rendering the shadow map tends to be a simple
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Figure 6.1: The figure above displays a timing table for the reconstruction of a

teapot model. The resolution of the input images was 640x480, and a moderately

coarse contour approximation was selected.

operation that is only dependent on scene complexity, generating the penumbra

map is a relatively time consuming process. This is due to the fact that in order

to generate penumbral intensities, we are computing a fairly sophisticated pixel

shader on each fragment that passes through the graphics pipeline. The size of

the penumbra map geometry shares a direct relationship with the radius of the

light and an inverse relationship with the distance separating the light from the

foreground object (Figure 5.4). Therefore, as the light radius grows, or the object

moves closer to the light, the resulting penumbra cone and sheet geometry expands

as well. The result is that many more fragments are produced and consequently

the GPU time required to process the fragments increases. It is very difficult to

predict an execution time for this portion of the system; however, if the object is

sufficiently far from the light and the light radius is not too large, the penumbra

map can be generated in about 0.04 seconds. In our system, we only deal with a
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single light source in generating shadow effects. However, if the number of lights

were permitted to expand, then the time requirement associated with this portion

of the code would scale linearly with each additional light.

The generation and acquisition of the background image from RTGI also plays

an important role in the timing of our system. The running time of the image

generation phase is highly dependent on the nature of the background scene. Key

factors include the scene’s complexity, the global illumination effects that we are

attempting to realize, and the number of nodes in the parallel compute cluster

that we want to use to drive the pixel shaders. For the majority of our testing,

we used 16 Intel dual processor 1.7GHz Xeon computers. We enabled the Render

Cache system developed by Bruce Walter [WDP99] and we used the light clustering

shader developed by Sebastian Fernandez [Fer04] in order to produce soft shadows

from area light sources interactively. The background images, which are rendered

at a resolution of 512x512, can be produced in 1/30th of a second. The RTGI

system is networked to our server over Gigabit Ethernet, and we have been able

to achieve transfer speeds of about 0.006 seconds per frame.

The final compositing sequence involves updating the OpenGL textures with

the new video frames, loading the RTGI image into the color buffer, and rendering

both the background and foreground models. With the exception of updating the

OpenGL textures, which scales linearly with the number of cameras, all the other

operations performed in this final stage can be run in constant time. The principal

time consideration here is the complexity of both the background model and the

reconstructed mesh. This is the fastest operation in our system and for most scenes

the final rendering pass can be accomplished in under 0.005 seconds. Figure 6.2

displays the timing for our entire system.
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Figure 6.2: The diagram above shows the performance of our system when cap-

turing a human figure with a camera resolution of 1024x768, shadow and penumbra

maps of size 1024x1024, and a background scene containing 195 quadrilaterals.
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6.1.1 Bottlenecks

As can be seen in Figure 6.2, there currently do not appear to be any major bottle-

necks in our system. There are, however, several routines which have considerably

longer running times than other portions of the code. These areas include:

• transferring the images from the camera to the client machines

• blurring the segmented frames

• transferring the image data to the server

• computing the polyhedral hull

• generating the penumbra map

The data transfer rate from the video cameras to the client computers is not

an area we can readily improve. At the moment we are using the fastest available

interface that our cameras support, FireWire 400.

Blurring the segmented images is not a strict requirement, however, it helps to

eliminate camera noise and produce smoother contours. This portion of the code

has been heavily profiled and can not be easily improved further. The simplest

way to remove the performance hit of the filtering is just to disable it completely.

Although the contour quality does tend to degrade slightly, if the capture envi-

ronment has sufficiently good lighting conditions then the results are still very

usable.

There are several methods which one could employ to decrease the transfer

time between the client machines and the server. One option would be to try and

compress the data to reduce the size of the data sent. A second possibility would

be to run the data transfer routine in a separate thread. This would allow the data
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transfer to happen asynchronously, in parallel with the hull reconstruction of the

previous frame.

Like the Gaussian filtering code, the polyhedral hull algorithm has undergone

substantial profiling. In order to improve the performance of our reconstruction

code, we implemented an internal memory management system. By initially allo-

cating a large array of matrices and then distributing them on demand, we were

able to speed up this portion of the system by over 30%. The reason we were able

to see such a dramatic improvement is that the polygon intersection routine, used

to generate the polyhedral hull, is continually allocating dynamic arrays. When

these heap allocations and deallocations are done at runtime, the ongoing negoti-

ations with the operating system tend to become a bottleneck. By allocating the

memory all at once on startup, these problems can be easily avoided. To measure

the effects of our perfomance tuning, we used Intel’s VTune Performance Ana-

lyzer 7.0. Further improvements could be made through the development of more

complicated data structures designed to maintain coherence.

The generation of the penumbra map has two costly operations, the calculation

of the foreground object’s silhouette and the rendering of the penumbra geometry.

Computing the foreground silhouette is limited by the read-back speed from the

graphics board. Thus the problem will be alleviated with future advances in graph-

ics hardware. The rendering of the penumbra map might be improved simply by

further optimizing the fragment shader to take better advantage of the hardware.

Another approach might be to provide some functionality for automatically ad-

justing the light camera’s clipping planes when rendering the penumbra map such

that they form the tightest bounding box possible around the foreground object

and receiver geometry. This would reduce the size of the cone and sheet geometry,
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and thus minimize the number of fragments on which the shader has to be run.

Currently it is a difficult process to profile code written for the GPU. Since this

was our first endeavor in pixel shader development, it is possible that our code is

naive in implementation.

6.2 Reconstructed Geometry

In this section we will discuss the quality of the reconstructed polyhedral hull. It

is our intent to show that the meshes which we generate are sufficiently accurate

for casting visually plausible shadows and for new view synthesis between the

reconstruction camera viewpoints.

6.2.1 Geometric Accuracy

In order to make an assessment as to the geometric accuracy of a reconstructed

hull, we need to have a metric of evaluation. The method that we have chosen for

gauging the quality of our results is an image space comparison of the reconstructed

object’s projected pixels. We render the reconstructed foreground object from a

virtual viewpoint within our system and then we count the number of the pixels

that it occupies on the image plane. Next we render an exact model of the object,

from a camera-matched viewpoint, in Discreet’s 3D Studio Max software. This

image is referred to as the gold standard. By counting and comparing the number

of image plane pixels occupied by the gold standard to that of the reconstructed

rendering, we can compute the projected error for the viewpoint in question. In

order to provide a control for the experiment, we render the generated model from

the four reconstruction camera positions used during the reconstruction process.
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Because the model is being viewed from the camera locations corresponding to

the original input silhouettes, the projected error is kept to a minimum. Some

error is still introduced, however, as the contour finding algorithm which we run

on the segmented image retrieves the silhouette as a series of line segments. This

approximation does not exactly represent the object’s original shape, and thus

errors arise along the border pixels.

For our experiment, we used a teapot model as the foreground object to be

captured. Figure 6.3 shows the four, six, and eight camera configurations. The

figure also shows the six virtual viewpoints which we selected for error analysis.

The first three viewpoints are positioned midway between the upper and lower

reconstruction camera planes, while the later three viewpoints share the same

plane as the lower reconstruction cameras.

The results of the control experiment are displayed as difference images in

Figure 6.4, where black pixels indicate that the rendered polyhedral hull deviated

from the gold standard image. The error values associated with the exact camera-

matched viewpoints are all less than 3.0%, and as expected, the difference pixels

fall along the boundary of the object.

In Figures 6.5 and 6.6, rendered images of the reconstructed teapot model are

compared to their gold standard counterparts at each of the six virtual viewpoints.

This comparison is made for the teapot model as reconstructed by four, six, and

eight cameras. It can be seen that as more cameras are added as input to the

reconstruction process, the final mesh approximates the original object more ac-

curately. This is exhibited by the fact that with each camera added, the projected

error is decreasing, converging to the case where the viewpoints are exactly aligned.

With an infinite number of cameras, the reconstructed hull would have the correct



108

Figure 6.3: The image above shows the four, six, and eight camera configurations

used for geometric reconstruction. It also identifies the six virtual viewpoints which

we selected for evaluating the accuracy of our computed models. These virtual

viewpoints are labeled A, B, C, D, E and F.

projection from any viewpoint, minus the error introduced by the contour approx-

imations. However, this is not to imply that the reconstructed geometry would

be true to the original form, as the reconstruction algorithm is unable to capture

interior concavities that are not visible in any silhouette. Figure 6.7 displays the

same set of virtual viewpoints as shown in Figure 6.6, however, in this sequence of

images the teapot has been shaded. This illustrates the improvement in rendering

quality that can be attained by using additional reconstruction cameras.
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Figure 6.4: The figure above shows the difference images that were generated by

rendering the model from each of the four reconstruction camera locations. Black

pixels indicate that the image of the reconstructed teapot varied from the image

of the original teapot. White pixels indicate that the two images were the same.

Note that the error pixels all lie along the border of the teapot. This is because

the contour extraction algorithm has approximated the exact silhouette with line

segments. These images were rendered at a resolution of 640x480.
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6.3 Final Composites

In this section we will present a sequence of images that reflect the quality of

results our system is able to produce. We will start with the output of individual

portions of the algorithm and conclude with a series of final composite images that

show everything working together. Figure 6.8 displays two screen captures of our

software, the first showing the video frames as seen by each of our four cameras,

and the second showing the extracted silhouette contours overlaid on the video

frames. This sequence of video was then used to reconstruct the model seen in

Figure 6.9. We present two views of the reconstructed model, both of which are

novel and not aligned with any of the reconstruction viewpoints. In Figure 6.10 we

show the results of another video sequence. In this example, we have captured a

person swinging a golf club, and inserted their model into a synthetic environment.

The geometry is displayed in wire frame mode to accentuate the dynamic nature

of the mesh, and show that it is recomputed each frame. Figure 6.11 displays

the golf composite sequence rendered in shaded polygon mode. In Figure 6.12,

we present a series of images that illustrate all the components of our system

working together. The foreground object is a person walking around and bouncing

a ball in a synthetic environment. The reconstructed hull has been inserted into

this simulated background, and shadows are being cast both onto the foreground

geometry from the background model and onto the background scene from the

foreground object. Finally, in Figure 6.13, we illustrate the difference between

hard contact-shadows and soft shadows produced by our system.
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Figure 6.9: The figure above shows two reconstructed views of our mannequin,

Howie, with some beach toys. He is displayed in both filled mode and wire frame

mode to show off the quality of the reconstructed mesh.
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Figure 6.13: The figure above illustrates the different types of shadows that our

system is capable of generating. The person’s feet are casting a hard contact-shadow

onto the surface of the floor. The person’s head, however, is casting a soft shadow

onto the far wall of the room.



Chapter 7

Conclusion

In this thesis we present a novel compositing system that leverages multiple views

of the foreground object to reconstruct a 3D approximation of its shape. Having a

three-dimensional representation of the subject allows us to generate more visually

plausible composites than would be possible with only a 2D matte. We perform the

entire compositing process in three dimensions, permitting us to properly handle

occlusions and simulate physically-based global illumination effects. Furthermore,

in our system the user is free to move the camera to an arbitrary location, thus

eliminating the traditional view-dependent restriction of a 2D compositing system.

We demonstrate an approach for combining the reconstructed geometry with syn-

thetic imagery created by the Program of Computer Graphics’ Real-Time Global

Illumination (RTGI) system, and we introduce a technique for casting shadows

between the foreground and background environments such that neither set of

geometries has self-shadowing computed twice.

We have shown that the foreground reconstruction and image compositing can

be accomplished in a real-time system that works interactively with the video

capture process. We use a distributed computing paradigm to separate the im-
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age segmentation and matte operations from the reconstruction and compositing.

Our system also utilizes modern graphics hardware for computing soft shadows

in pixel shaders executed on the GPU. We have developed and implemented our

three-dimensional compositing system using consumer grade hardware, making it

appealing as a potential replacement to current compositing systems.

7.1 Future Work

A number of short-term improvements could augment our system’s functionality

and robustness.

One limitation of our existing system is that it can only handle a single light

source. To relax this constraint, a separate shadow map and penumbra map has to

be generated for each additional light in the virtual scene. A method for computing

how overlapping shadows combine would also need to be determined. Adding this

functionality to our system would increase its versatility in terms of the types of

usable background environments and provide even more realistic imagery.

A better improvement would be to pass the generated polyhedral mesh to the

RTGI system before rendering. This would simplify the compositing process, as

all the rendering would be performed with one cohesive integrated environment,

and RTGI is capable of generating arbitrary levels of global illumination depending

on the desired application. The existing barrier that must be overcome is RTGI’s

inability to handle dynamic geometry creation. Adding new geometry would re-

quire that the scene’s data structure be either updated or completely rebuilt, and

there is currently no infrastructure in place for performing this operation on a

frame-to-frame basis.
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The use of background subtraction routines as an alternative to greenscreening

would afford our system more flexibility in regard to camera placement, as we

would no longer require a green backdrop for extracting the foreground matte.

Finally, the geometric reconstruction algorithm could be improved to more

gracefully degrade as objects move in and out of view of the cameras. In our

current system, if a portion of the foreground object falls outside the view of any

of the reference cameras, then that part is clipped away. This is because the hull is

reconstructed using the intersection of all of the cameras’ viewing cones. Instead,

a visibility check could be performed on each potential hull surface, such that

the final surface is the intersection of the viewing cones from each camera whose

frustum encompasses that location. This would result in more coarse geometry

where only a few cameras could see the object, but would make the system more

adaptive to varying situations.

One potential avenue of research would be to either improve upon, or remove

completely, our system’s matched lighting restriction. If the foreground environ-

ment’s lighting is known, then a user-interface could be designed to alter the loca-

tions, colors, and intensities of the lights in the background scene such that they

arbitrarily approximate the foreground illumination. To aid in this process, light

probes could be used to capture and store the foreground lighting configuration.

Alternatively, an inverse-lighting operation could be run on the video textures,

thus removing the original lighting. Then the textures could be re-lit according

to the illumination in the virtual set. Unfortunately, both of these steps require

knowledge of the foreground object’s material properties. Estimating these prop-

erties in an interactive application is a daunting task. One alternative would be

to have the user manually estimate material properties for each foreground object
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before the compositing process started.

Another area of research concerns how to maintain frame coherence, reusing

previous model data to further refine the current mesh. If rigid-body motion is as-

sumed, then tracking a few points would be sufficient to determine how the model’s

location and orientation is changing from frame to frame. Subsequent frame data

could then serve as additional constraints on the object’s volume, “chipping away”

at the polyhedral hull so that it more closely approximates the actual volume. If

the object is deformable, as is the case with human subjects, then simple point

tracking is not sufficient to determine the subject’s location and pose. For this

scenario, a more sophisticated technique would be required. For example, the cap-

tured silhouettes could be matched to different poses of a parametric humanoid

model. Performing this matching in real-time is a difficult problem to solve. As-

suming the matching problem was feasible, one idea would be to store a database

of potential foreground objects. Then, after the object had been identified and

its pose and parameters determined, the more accurate database model could be

textured with the video frames and used for the composite rendering.

Finally, research could be done to determine the optimal camera placement

for reconstructing the shape of an object. In this thesis we only conducted some

preliminary investigations regarding the measurement of the projected error for

varying numbers of reference cameras. However, further studies could be done to

measure how the hull of an object improves with each additional camera added,

to determine when the point of diminishing returns has been reached, and to

evaluate if the placement of cameras is scene specific, or if there is an optimal

global configuration.



Appendix A

Camera Calibration

The camera calibration toolbox for MATLAB was used exclusively for determining

the intrinsic and extrinsic parameters of the cameras in our system. The input

to the toolbox is a sequence of digital images, each containing the surface of a

checkerboard. The user selects the four corners which define the outer extents

of the checkerboard, and the software can then perform automatic extraction of

the internal grid corners. As the toolbox computes the grid corners, it prompts

the user to enter a value for the adjustment of radial distortion (if desired). The

main calibration routine can then be executed, which utilizes a gradient descent

technique to minimize the reprojection error of the grid pixels. This returns the

internal and external parameters of the camera.

The format of the returned data is such that each camera is considered its own

world reference frame, and the rotation and translation vector to the grid origin

are given. This is not ideal for our purposes, as we require a single world reference

frame, in terms of which each camera basis and position are given. To make this

conversion, we invert each camera’s rotation matrix, by taking its transpose, and

then we negate each camera’s translation vector and multiply it by the camera’s
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new rotation matrix. In MATLAB syntax, this resolves to the following for a single

camera:

Camera1 RotationMatrix = Rc 1’

Camera1 Translation = Camera1 RotationMatrix * (-Tc 1)

Where “Rc 1” is the rotation matrix returned by the toolbox for Camera 1 and

“Tc 1” is the translation vector returned by the toolbox for Camera 1. After we

have the location and pose of each camera in terms of a global reference frame, we

convert the reference frame such that it is the same right-handed basis that our

system uses internally. In our system, the x-axis is positive to the left, the y-axis

is positive in the up direction, and the z-axis is positive going into the screen. The

MATLAB syntax to make this conversion for a single camera is:

Cam1 RotTmp = [Cam1 RotMat(2,:); -Cam1 RotMat(1,:); Cam1 RotMat(3,:)]

Cam1 RotationFixed = [-Cam1 RotTmp(:,1) -Cam1 RotTmp(:,2) Cam1 RotTmp(:,3)]

Cam1 TranslationFixed = [Cam1 Trans(2,:); -Cam1 Trans(1,:); Cam1 Trans(3,:)]

The “fixed” rotation matrices and translation vectors, along with the principal

point and focal length, are stored in a settings file that is loaded into our program

each time it is executed. This provides the necessary information for computing

the cameras’ projection matrices as well as the fundamental matrices which relate

the cameras.



Appendix B

Trigger Circuit Design

Each of the DFW-X700 cameras has an external trigger that can be used to drive

the capture process, by sending a low pulse of at least 1ms duration on the “TRIG

IN” connector, pin 3. The cameras have an internal pull-up resistor, so in order to

trigger the low signal, we simply pull pin 3 to ground when we want an image to

be captured. For our trigger design, we take advantage of the serial port, COM1,

on the central server. According to the RS232 standard, the serial port transmits

a ‘1’, or logic high, as -3 to -25 volts and a ‘0’, or logic low, as +3 to +25 volts. We

use the data transmit pin on the DB9 serial port connection to control our trigger

circuit. When no data is being actively transmitted, our serial port outputs -11

volts on the data transmit pin. When we want the signal to go high, we write out

a packet of zeros, and the data transmit pin goes to +7.5 volts.

The trigger circuit is quite simple and consists of an NPN transistor and a

2.2k resistor. The signal ground (SG) from the serial port, pin 5, is tied to the

emitter pin on the 2N3904 transistor, as is the ground from each of the four trigger

cables which run to the cameras. The data transmit pin (DT), or pin 3, from the

serial port is tied to the base pin on the transistor through the 2.2k resistor, and
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the collector pin is attached to the positive leads of the trigger cables. When our

software, running on the server, writes a string of zeros to the serial port, the DT

pin goes high, permitting the flow of electrons from the emitter to the collector,

and pulling the “TRIG IN” pins on each of the cameras to ground. This causes

the trigger to fire, and an image to be captured.
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[AMA02] Tomas Akenine-Möller and Ulf Assarsson. Approximate soft shad-
ows on arbitrary surfaces using penumbra wedges. In Rendering
Techniques 2002: 13th Eurographics Workshop on Rendering, pages
297–306, June 2002.

[ARHM00] Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich, and Laurent
Moll. Efficient image-based methods for rendering soft shadows. In
Proceedings of ACM SIGGRAPH 2000, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 375–384, July 2000.

[AWG78] P. Atherton, Kevin Weiler, and Donald P. Greenberg. Polygon
shadow generation. In Computer Graphics (Proceedings of SIG-
GRAPH 78), volume 12, pages 275–281, August 1978.

[Bli88] James F. Blinn. Jim blinn’s corner: Me and my (fake) shadow. IEEE
Computer Graphics & Applications, 8(1):82–86, January 1988.

[Box04] http://www.boxofficemojo.com, 2004.
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