
REAL-TIME HARDWARE BASED TONE REPRODUCTION 

 

 

 

 

 

 

 

 

A Thesis 

Presented to the Faculty of the Graduate School 

of Cornell University 

in Partial Fulfillment of the Requirements for the Degree of 

Master of Science 

      

 

 

 

 

 

 

 

by 

John Crane Mollis 

May 2004 

 



 

 

 

 

 

 

 

 

 

 

 

© 2004 John Crane Mollis 

ALL RIGHTS RESERVED 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

The human visual system is exposed to a vast range of illumination conditions, 

far greater than any display device can reproduce, and its response to these conditions 

varies greatly.  To create an immersive impression and accurate portrayal of a scene 

on a computer monitor requires complex modeling of visual response through tone 

reproduction algorithms and the simulation of adaptation effects in real-time.  

However, all current tone reproduction operators are off-line and address only a 

portion of the visual phenomena necessary for completeness, thereby limiting their 

applicability.  A mostly unexplored problem is how perceptually accurate and full 

featured tone reproduction can be incorporated into interactive applications where 

visual effects will be dynamic and often very dramatic.  Previous work in this area has 

been constrained with respect to the generality of tone reproduction models used, the 

scope of available input and the hardware output performance. 

 The aim of this thesis is two-fold.  First, we create a real-time tone 

reproduction operator that includes as many phenomena as possible and is based upon 

psychophysical data.  This requires a combination and extension of the best operators 

for predictive tone mapping and significant acceleration using current commodity 

graphics hardware.  Care is taken to not restrict available input or compromise the 

predictive nature of the operator through artificial approximations.  The result is a 

widely applicable, fast and comprehensive operator with applications in lighting 

engineering, architectural walkthroughs, flight and car simulators, entertainment and 

due to it’s predictive nature, low vision simulation.   

The second aim of this thesis is to use our perceptually based operator to 

construct a low vision simulation tool for evaluating real or simulated environments 

for suitability with older individuals. 



  

BIOGRAPHICAL SKETCH 

 

John Mollis was born in Flemington New Jersey on June 24th 1979 and grew up in the 

small town of Ringoes NJ.  This was the most idyllic and wonderful time of his life.  

There was a train station with a real locomotive, corn fields, countryside and a 

summer paradise of fruit trees.  No doubt such a stimulating environment shaped him 

profoundly.  In fifth grade his family moved to Titusville, NJ where they still reside.  

After high school he applied to Cornell University and finished undergrad with a BA 

in Physics and then immediately joined the Program of Computer Graphics in pursuit 

of a Master of Science degree.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iii 
 



  

ACKNOWLEDGMENTS 

 

I would like to thank Professor Donald P. Greenberg for giving me the chance to do 

research at the Program of Computer Graphics.  Without your faith in me none of this 

work would be possible.  Thanks must also go emphatically to Jim Ferwerda.  I would 

not have been able to get through this without your guidance and I’m very grateful.  

You taught me a good deal about research and science.  Many others at the PCG have 

also helped me along the way.  Peggy Anderson and Linda Stephenson, it’s great to 

have kind people to talk to when pacing the halls and to remind me of the forms I’ve 

completely forgotten about.  Mary Armstrong, I appreciate the conversation and 

especially the cabbage and potatoes.  To everyone else at the PCG, I’m grateful for 

your help and company, without which my time here would have been much tougher.  

Finally, I thank my family and friends for supporting me through the often rough time 

of graduate school.  Bay, you were my life jacket and my sunlight in gloomy Ithaca.  

 

 

 

  

 

 

 

 

 

 

 
 
 

 iv 
 



  

TABLE OF CONTENTS 
 
 
1     Introduction              1 
 
2     Previous Work              6 
       2.1     Current Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 
      2.1.1  Preference Based Global Operators. . . . . . . . . . . . . . . . . . . . . . . . . . .6 
      2.1.2  Preference Based Local Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . .8 
      2.1.3  Predictive Global Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 
      2.1.4  Predictive Local Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 
      2.1.5  Real-time Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 
        2.2    Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 
        2.3    Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
   
3     Requirements and Basis for a New Operator                   24 
 
4     Capabilities of Current Commodity Graphics Hardware      34 
       4.1     Floating Point Textures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

4.2 P-Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
4.3 Automatic Hardware Mipmapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
4.4 Fragment Shaders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38  
4.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  

 
5     Hardware Acceleration           41 

5.1 Input Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
5.2 Foveal Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
5.3 Veiling Luminance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 
5.4 Local Acuity Blurring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
5.5 Color Sensitvity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5.6 Histogram Adjustment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 
5.7     Fragment Shader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  

 
6     Adaptation Time Course         65 

6.1 Dark Adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 
6.2     Light Adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  

 
7     Results             73 

7.1 Simulating Wide Absolute Changes in Illumination. . . . . . . . . . . . . . . . . .74 
7.2 Comparison With Ward’s Histogram Adjustment Operator. . . . . . . . . . . .77  
7.3 High Dynamic Range and Operator Performance. . . . . . . . . . . . . . . . . . . .79 

7.3.1     Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
       7.4     Light and Dark Adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 

7.5     Normal Versus Aged Observers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
 

 v 
 



  

8     Conclusions and Future Work          91 
 
Bibliography                      101 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 vi 
 



  

LIST OF FIGURES 

 

Chapter 1 

Figure 1.1: High level view of tone mapping operators. . . . . . . . . . . . . . . . . . . . . . . . .2 

Figure 1.2: The range of luminances in the natural environment. . . . . . . . . . . . . . . . . .3  

Figure 1.3:  A series of Five exposures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  

 

Chapter 2 

Figure 2.1:  Two images illustrating halo artifacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  

 

Chapter 3 

Figure 3.1:  Target applications of our proposed operator. . . . . . . . . . . . . . . . . . . . . . 24  

Figure 3.2: Visual phenomena as modeled in various work. . . . . . . . . . . . . . . . . . . . .28 

 

Chapter 5 

Figure 5.1: Overview of Ward’s histogram adjustment operator. . . . . . . . . . . . . . . . .42  

Figure 5.2: Overview of Ward’s veiling luminance operator. . . . . . . . . . . . . . . . . . . .46  

Figure 5.3: Two views of Ward’s veiling luminance variable convolution kernel. . . .47  

Figure 5.4: Hardware accelerated local acuity blurring . . . . . . . . . . . . . . . . . . . . . . . .52  

Figure 5.5: Custom acuity mipmap generation algorithm. . . . . . . . . . . . . . . . . . . . . . 53  

Figure 5.6: Mipmap formation using fragment shaders and P-buffers . . . . . . . . . . . . 55  

 

Chapter 6 

Figure 6.1: The time course of dark adaptation threshold versus time. . . . . . . . . . . . .66  

Figure 6.2:  A model of detection thresholds over the range of vision. . . . . . . . . . . . .67  

Figure 6.3:  The time course of light adaptation for rods and cones. . . . . . . . . . . . . . .70  

 vii 
 



  

Chapter 7 

Figure 7.1: Visual function simulated over a large absolute range of vision. . . . . . . . 75 

Figure 7.2: Comparison of our operator with Ward’s operator. . . . . . . . . . . . . . . . . . 78  

Figure 7.3: Our operator applied to scenes with varying properties. . . . . . . . . . . . . . .80  

Figure 7.4: Image sequence showing the time course of dark adaptation . . . . . . . . . .82  

Figure 7.5: Image sequence showing the time course of light adaptation. . . . . . . . . . 83       

Figure 7.6: Headlights on and off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  

Figure 7.7: Comparison of dark adaptation in a 25 and 75 year old. . . . . . . . . . . . . . .87  

Figure 7.8: Frames from the tunnel HDR movie for a 25 and 75 year old. . . . . . . . . .89  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 viii 
 



  

LIST OF TABLES 

 

Chapter 4 

Table 4.1: Summary of fragment program instructions. . . . . . . . . . . . . . . . . . . . . . . . 38  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ix 
 



  

Chapter 1 
 
Introduction 

 

Tone reproduction in computer graphics, at the highest level of abstraction, is 

an attempt to match the visual response of a scene viewer with the visual response of a 

display viewer looking at a digitally sampled version of the actual scene presented on 

some display device (Figure 1.1).  At this level display technology and image capture 

techniques define the accuracy with which a captured scene can be physically 

reproduced.  If we had some way to exactly capture and reproduce the real radiance 

incident on an observer’s eyes the problem would clearly be solved.  However, the 

current state of display technology allows only limited fidelity with respect to 

maximum displayable luminance, dynamic range, color gamut and screen resolution.  

It is then the job of tone reproduction algorithms to fill the gap between display and 

scene observer, as best as possible, given current limitations of display hardware. 

General tone reproduction, which artists have dealt with for centuries (with the 

advantage of being the human observer) was first noticed formally by photographers 

trying to faithfully reproduce impressions of real world scenes on photographic paper. 

Many practical methods were developed to address this problem  [London98].  Some 

examples are the Zone System [Adams80, Adams81, Adams83] and dodging and 

burning.  In computer graphics the development of radiosity and monte carlo path 

tracing [Glassner95] allowed physically based illumination simulations and thus high 

dynamic range output.  More recently Debevec [Debevec97] pioneered high dynamic 

range digital photographs, adding to the need for good display mappings.  Initial 

display  mapping  methods  were  ad  hoc,  for  example  taking  the  cube  root  of  the  

 

 1 
 



 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1: High level view of a tone mapping operator [Tumblin93]. 

 

luminance to map into the display range.  This distorts impressions of brightness and 

contrast.  Linear scaling was also used, a process which works for scenes with similar 

dynamic range to the display but fails for high dynamic range scenes [Ward97].  

Informed and robust tone mapping was badly needed and a conceptual framework for 

tone reproduction in computer graphics was first introduced by Tumblin in 1993.    

 A tone reproduction operator in Tumblin’s framework (Figure 1.1) has two 

parts.  First, and most importantly is the visual model which allows the visual state of 

the scene observer and display observer to be related to create a mapping that will 

optimally reproduce the visual experience of the actual scene on the display.  Second 

  
 



 3

is the display model, which includes the physical parameters of the display device.  

For example the absolute and dynamic range, color gamut, screen resolution and 

gamma correction factor.  These parameters are used in mapping from visual response 

to the display.  The central premise of all such operators  is that the visual system loses 

information in the encoding process, for example through insensitivity to absolute 

luminance levels, so that different visual stimuli (in this case the radiance in a real 

scene and the radiance from a CRT display) will produce the same visual response and 

in turn the same visual experience [Ferwerda98].  

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2: The range of luminances in the natural environment and related 
visual parameters [Ferwerda96]. 

 

 

To better appreciate the tone reproduction problem we briefly examine the 

range of luminances encountered in nature and associated visual response parameters 

(Figure 1.2).  In the real world the overall range of light energy varies dramatically.  

For instance the light of the sun at noon can be up to one million times brighter than 

moonlight and the visual system responds differently over this range.  Furthermore, 

dynamic range (the ratio of the greatest luminance to the least) can easily be 100,000:1 

in a night scene with bright light sources or caustics [Tumblin99].  A human observer 

  
 



 4

can adapt to a dynamic range of 10,000:1 in one view.  However, a CRT display can 

only reproduce a luminance dynamic range of ~100:1 [Devlin02].  Simple operators 

are often ineffective.  Figure 1.3 illustrates the difficulty of displaying the appearance 

of a high dynamic range scene if one only varies exposure.  Further difficulties arise if 

a faithful mapping is desired for all illumination levels because human vision varies, 

for example, with respect to acuity and color sensitivity (Figure 1.2, visual function), 

two of a host of variable perceptual phenomena.   

 

 

 

 

 

 

 

 

 
 

Figure 1.3: Five photographs with exposure increasing from left, illustrating 
the difficulty involved with reproducing the subjective appearance of an  HDR 
scene on limited dynamic range display devices with simple uninformed 
mapping like using a global exposure [Fattal02]. 

 

There are two related but distinct approaches to tone mapping in the current 

literature, preference-based and predictive.  Preference based operators concentrate all 

efforts toward mapping the intensity of images such that detail is preserved, and 

specifically, that subjectively the displayed image looks plausible and free of artifacts.  

They rely mostly on the assumptions that the human visual system is not very 

sensitive to absolute intensities that reach the retina, but  rather, it responds to local 

intensity ratios and minimizes large global differences [DiCarlo00, Oppenheim68].   

The second approach we call predictive operators.  These operators refer specifically 

to the human visual system via psychophysical data and try to mimic visual response 

over one or more visual phenomena.  Some example visual phenomena are dynamic 

  
 



 5

range compression, color saturation and visual acuity as a function of light level, glare, 

and the time course of light and dark adaptation.  The goal is to accurately reproduce 

the true appearance of a scene (possibly changing over time) on a display while 

maintaining validity through the use of psychophysical data. 

 A further useful distinction between operators that applies to how they 

compress dynamic range is local versus global.  Local operators vary their scene-to-

display mapping functions over individual portions of the image.  Such operators tend 

to be computationally more intensive because of this but high quality results can be 

obtained (e.g [Fattal02]).  Global operators use a single mapping function applied to 

the entire image.  Thus, global operators are more efficient but often sacrifice some 

quality.  The sacrifice is due to the one-to-one monitonic nature of the mapping 

curves.  They have trouble reproducing local contrasts in images, particularly where 

the intensities of a region where detail should be visible populate the entire dynamic 

range in a nearly uniform fashion [Fattal 02].  For either variety of operator the 

mapping is applied to the luminance or to each channel ( r, g and b) of each image 

pixel.  Some researchers refer to local and global operators with different terminology.  

DiCarlo and Wandell refer to global operators as TRCs (tone reproduction curves) and 

local operators as TROs (tone reproduction operators). 

 In the next chapter we discuss the tone mapping literature and attempt to place 

the work into the framework just described.  This sets the stage for us to discuss our 

specific tone reproduction goals and to evaluate what current work is valuable to assist 

in making them possible. 

 

 

 

 

  
 



 

Chapter 2 
 
Previous Work 
 

2.1 Current Operators  

 

To begin our discussion of past work in tone reproduction we chart the space 

of operators in the following order: preference based global operators, preference 

based local operators,   predictive global operators, predictive local operators and real-

time operators.  Real time operators are for the most part attempts to accelerate 

previous operators for use in interactive applications.      

 

2.1.1 Preference Based Global Operators 

 

Few preference based global operators are in serious use in computer graphics 

today.  However, they are used in digital photography standards, and may include 

logarithmic RGB signal representations to accommodate larger dynamic ranges 

[Holm00].  Preference based global operators were the forerunners to informed tone 

reproduction.  Prime examples are a gamma corrected linear mapping or taking the 

cube root of the intensities as discussed in the introduction.  However, there are a few 

notable exceptions.  

Early work in computer graphics by Schlick 1994, used a globally applied 

rational mapping function as an alternative to linear, exponential or logarithmic 

mappings for compressing contrast.  His aim was to improve efficiency and reduce 

complexity of use.   

 

 6



 7

Geigel and Musgrave [1997] suggested a tone reproduction operator based on 

photographic principles to simulate the process of black and white film development 

for digital images.  They use models based on empirical data for film development 

along the dimensions of density response, spectral sensitivity, resolution and 

granularity.  Density measures the opacity induced in an emulsion from light.  It is 

called transmission density in the case of film and reflective density in the case of 

photographic paper.  Granularity is the graininess of photographic paper.  First an 

exposure is determined by setting an exposure time interval,  filtering the result by a 

spectral sensitivity curve, and simulating film resolution through internal scattering 

based on the modulation transfer function (MTF) of an emulsion.  Then the density 

response  is calculated from the formerly computed exposure value using the 

characteristic curve for a given emulsion.  Film grain is simulated by stochastically 

modulating the density values with gaussian noise.  Finally, the density values are 

converted to transmission values (film) or reflection values (paper).  

Tumblin, Hodgkins and Guenter [Tumblin99], use Schlick’s  global rational 

mapping function and take the illumination versus reflection component observation 

(see [Oppenheim68] for a review) to it’s conclusion for synthetic scenes.  Illumination 

and reflectance information is available in synthetic renderings because the material 

properties are known and the light sources are completely specified.  A separate layer 

for each can be calculated. Then the illumination layer is compressed using an s-

shaped or sigmoid curve and recombined with the reflectance layer.  The result is 

dynamic range compression and preservation of scene details.  Tumblin also included 

a foveal adaptation approach in which the mouse position sets a viewer’s supposed 

focus and adaptation level. 

 

 



 8

2.1.2 Preference Based Local Operators 

 

The earliest work in electronic imaging seems to be Oppenheim, Schafer and 

Stockam [1968].  They recognize the issue of limited dynamic range in displays and 

propose an algorithm based on homomorphic filtering.  Their primary observation        

( also used  by [Stockham72], [Tumblin93] and others ) is that a scene can be divided 

into an illumination component and a reflection component.  The problem with 

dynamic range is due mostly to the magnitude low frequency illumination component.  

The reflection component contains mostly high frequency information with small 

intensity variation.  Thus by attenuating the magnitude of the low frequency 

component scene features across the intensity range can be displayed.  They 

accomplish this by attenuating low frequencies in the Fourier domain. A major 

assumption in this approach is that detail preservation is tantamount to appearance 

reproduction, which is the primary goal of tone mapping.  This early method is slow 

and suffers from halo artifacts.  Halo artifacts are reversals in large intensity gradients 

that lead to dark regions where there should be light ones.  Mostly, this occurs around 

light sources.  As can be seen from Figure 1.1, they are not a desirable artifact. 

Chiu et al. also developed a spatially non-uniform scaling  function for 

dynamic range compression.  They deliberately avoid other elements of adaptation and 

operate under the assumptions outlined by Land and Marr [Marr92, Land77] that the 

scene can be divided into a reflection and illumination component and that the 

illumination component is responsible for the high dynamic range.  Their algorithm 

hinges on using a mapping that is the reciprocal of the inverse (blurred) intensity 

image to preserve detail.  Unfortunately, halo artifacts ( reverse intensity gradients) 

result around large image intensity gradients [Ward97].  Furthermore, the method is 

rather computationally intensive. 

 



 9

 

 

 

 

 

 

 

 

 

 

 

n

s

o

m

l

s

f

w

i

o

d

t

c

 

    

 

 

   

                    
 
 
Figure 2.1:  Two images illustrating halo artifacts.  The image on the right is
output from Pattanaik’s multi-scale model of adaptation [Pattanaik98].  On the left
is output from Chiu [Chiu93].  Both suffer from halo artifacts around the light
sources. 
Schlick [1994] built upon the work of Chiu.  His primary contributions were 

ew methods for creating spatially varying mappings.  The focus was on 

implification and computational efficiency.  The basis for improvement was the use 

f a rational mapping function for both global and local mappings.  He offers three 

ethods to compute the rational mapping function parameters per pixel.  The first is 

ow pass filtering just as Chiu.  This method creates halo artifacts as before.  The 

econd is micro-zones, which is a global mapping derived by reducing the low pass 

ilter of the previous method to the size of a single pixel.  The third is segmentation, 

hich attempts to divide the picture up into zones of similar intensity and map these 

ndividually.  The segmentation step is nontrivial and not worth any improvements 

ver his global mapping. 

Tumblin and Turk [1999] built further upon the well entrenched idea that 

ecomposition into low frequency luminance variation (illumination component) and 

he high frequency details (reflection  component) is roughly how the visual system 

ompresses high dynamic range and how one can algorithmically mimic the process.  



 10

In this case they took as inspiration the process artists use when painting.  Their 

innovation is the Low Curvature Image Simplifier (LCIS) method which uses 

anisotropic diffusion to separate the scene into a smoothed boundary and shading 

preserving component and a detail component.  The first component is compressed 

and the details are added back in afterward.  The method preserves fine details and 

avoids halo artifacts (except in some cases of extreme compression).  Still, it does not 

agree with the subjective impression of a scene observer, since it exaggerates details 

excessively giving a grainy unnatural look.  Furthermore, there are many free 

parameters and the algorithm is computationally intensive.     

Ashikmin [2002] provides a tone reproduction algorithm that tries to preserve 

local  contrast in an image by gauging the local adaptation level and applying a simple 

mapping to compress HDR values into the displayable range.  Local adaptation is 

given by the average luminance in some pixel neighborhood.  A pixel neighborhood is 

gauged through a measure of uniformity and starts small, then increments larger until 

this criterion is violated or a maximum neighborhood size is reached.  For a 

mathematical treatment of uniformity he uses the band-limited local contrast.  Then 

for each pixel the local adaptation level is passed to a tone mapping function that is 

based on relating the perceptual capacity of a scene and display observer.  Perceptual 

capacity is the notion that sensitivity to luminance changes as given by the threshold-

versus-intensity (TVI) functions, provides a natural scaling factor for a given small 

range of luminances.  The TVI functions describe the smallest luminance increment 

detectable at a given background luminance.  Finally, contrast is preserved through a 

locally linear mapping by simply dividing the current pixel luminance times the tone 

mapping function by the local adaptation value.  Although Ashikmin uses TVI data 

and other data on the HVS (Human Visual System) the accuracy obtained is probably 

not sufficient because he does not attempt to exactly follow the operation of the HVS.  

 



 11

Still, since neighborhoods are chosen carefully no halo artifacts occur and the 

algorithm yields good results. 

Reinhard et al. [2002] applies techniques from photography, in particular the 

long standing Zone system [Adams80, Adams81, Adams83] to tone reproduction.  

They adapt the system by using a key approach to setting an initial exposure then 

effectively dodge and burn areas as needed. In photography the key of a scene 

indicates whether it is subjectively light or dark.  Dodging and burning refers to 

adding more light or restricting light during print development.  This will lighten or 

darken regions of the print relative to the normal development process.  Reinhard sets 

an effective key for each pixel by using a center surround measure of local contrast 

based on brightness perception [Blommaert90] at multiple scales to find localities (via 

thresholds)  around pixels bounded by large contrasts.  Although there are a few free 

parameters left to discretion such as center surround ratio (ratio of center size to 

surround size) and some parameters that affect center surround scale, the method 

produces very attractive results and is reasonably fast and automatic.  Because the 

method effectively finds regions bounded by large contrasts and scales radiances in 

each region with similar exposure the method is directly related to the base/detail layer 

approach.  However, in the base layer there is not blurring across large intensity 

gradients and so there are no halo artifacts.  Also, detail is not extracted and added in 

later so it doesn’t look grainy.   

Durand and Dorsey [2002], present another variation of the base/detail layer 

approach seen previously [Oppenheim68 etc].  They share the quality of results 

obtained by Reinhard et al. In this case the base layer is obtained by using a non-linear 

edge preserving filter known as a bilateral filter which they relate to anisotropic 

diffusion.  The result is a filter that blurs small details but preserves large 

discontinuities.  The base layer is compressed and then recombined with the detail 

 



 12

layer producing very satisfactory results. This is done in the framework of Chiu et al. 

(using a non-uniform scaling function and taking the reciprocal of the inverse for the 

mapping)  but uses a robust filter rather than a low pass filter thus avoiding halos. It 

lacks the grainy look of LCIS because it doesn’t explicitly extract detail.  Furthermore, 

they focus on efficiency (piecewise linear approximation to bilateral filtering as a fast 

alternative to anisotropic diffusion) so the method is fast compared to previous work 

(almost real time).        

Fattal, Lischinski and Wermann 2002 approach tone reproduction with the 

same assumptions seen elsewhere in this section, but from the perspective of  

gradients.  They compress large gradients and leave small gradients unchanged 

thereby preserving small details and compressing the dynamic range.  To accomplish 

this they use a variation of multi-resolution techniques (see reviews of [Pattanaik98] 

and [Jobson97] for details).  They find gradients that need attenuation at multiple 

scales using an edge detection algorithm and then propagate gradient attenuation 

factors up to the full resolution image.  In this way they avoid the halos which plague 

multi-resolution techniques.  To get an LDR image a Poisson equation must be solved 

and they use standard finite difference techniques.  The method is effective and 

relatively efficient.    

 

2.1.3 Predictive Global Operators 

 

The earliest work in predictive tone reproduction was by Miller, Ngai and 

Miller [Miller84].  They used experimental data to attempt to match perceived 

brightness in a real scene and displayed scene.  However, they did not provide a solid 

theoretical basis for tone reproduction as Tumblin and Rushmeier [Tumblin93] later 

did.   

 



 13

Another important early work is Upstill’s 1985 thesis which is the first multi- 

featured predictive operator.  He first sets forth a framework not unlike Tumblin 

[1993] in which an attempt is made to match the visual response of  a scene viewer 

and a display observer looking at a digital representation of the scene.  After 

considering two approaches, algorithmic and heuristic, Upstill chose a heuristic 

approach.  The justification is that there is no accurate comprehensive characterization 

of visual processing and thus no basis for a complete algorithm.  Instead he uses 

psychophysical data collected for various visual phenomena and treats each 

phenomena separately to create a mapping for HDR images.  Although data is 

collected under ideal lab conditions with simple stimuli, using such data was deemed 

the most appropriate way to proceed.  Most other predictive work relies on the same 

kind of data.  Upstill tackled contrast sensitivity, visual acuity, color appearance, and 

dynamic range compression.   

Basic contrast and dynamic range control proceeds in two steps.  First, 

brightness response is estimated by relating it to the intensity response function, 

effectively an s-shaped curve.  Then the luminance required on the display to evoke 

the same response is determined.  This is done by relating the brightness response 

function computed for the scene data and the response function from viewing on the 

CRT, and then solving for the CRT intensity needed for a match.  The user controls 

the saturation levels for the input image and the parameters of the display viewer 

response function. 

Visual acuity is addressed through linear filters.  Fourier-space filtering is used 

to account for a relative loss or enhancement of contrast response from luminance 

values in the scene to those in the displayed image.   Assuming that perceived contrast 

is proportional to contrast sensitivity, frequencies will be enhanced or attenuated by 

the ratio of the contrast sensitivity function for the scene and display observer.   

 



 14

 Color appearance is treated for color sensitivity as a function of light level, the 

Bezold-Brucke effect (changes in light intensity tend to also change the hue),  

desaturation of color at high light levels and chromatic adaptation (For a review of 

these phenomena see [Upstill85]).  These are treated within the opponent-colors 

response model [Jameson56, Hurvich56, Hurvich81].  This model expresses chromatic 

response as one achromatic (Black/White) channel and two chromatic channels 

(Yellow/Blue and Red/Green).  Rod response is treated separately.  Color sensitivity is 

controlled with a linear scale factor over the range of photopic, mesopic and scotopic 

light levels between the rod and cone response.  The remaining effects can be modeled 

with appropriately chosen scale factors on the two color channels. 

Pioneering work for both tone reproduction and predictive operators in 

computer graphics was done by Tumblin and Rushmeier [Tumblin93].  They focused 

on preserving the perception of brightness for a scene observer (person in the real 

scene) and display observer (person looking at a CRT display). See Figure 1.1. 

Brightness is estimated by a functional fit to Stevens [1960] brightness versus 

luminance curves for different adaptation levels.  For the scene viewer adaptation is 

estimated by the mean logarithm of the luminance.  For the display viewer the 

adaptation state is estimated by the typical peak luminance of a CRT display.  The 

tone reproduction operator is formed by setting both the scene brightness and display 

brightness to be the same, and then solving for display values given scene luminances.  

The operator can handle scenes with extremes of brightness with the drawback that 

brightness may be preserved at the expense of visibility. 

In a new approach to tone reproduction Ward [1994]  concentrates on 

preserving apparent contrast or visibility rather than brightness.  A single scale factor 

is chosen for the image based on a method that hinges on the fact that adaptation can 

be viewed as a scaling of the absolute difference in luminance required for an observer 

 



 15

to notice a difference.  This result is known as Weber’s Law which says that the size 

of a just noticeable difference is a constant proportion of the original stimulus value.  

To use this fact Ward takes psychophysical data for contrast sensitivity over a range of 

world adaptation levels, sets the adaptation level using a supposed fixation point, and 

chooses a scale factor that will preserve the Just Noticeable Differences (JNDs) in 

contrast in the real scene and on the CRT display (at least at the fixation point).  The 

operator is very fast, but because it uses a linear scaling factor and one fixation point, 

the highest and lowest values will be clipped and visibility won’t be maintained 

everywhere in the image.  The method is also dependent on how applicable contrast 

sensitivity measurements (which are done in ideal laboratory conditions) are in 

complex scenes.  However, all Predictive operators have such dependencies. 

Ferwerda [Ferwerda96] built upon and extended the threshold visibility 

approach seen in Ward by adding additional elements from human visual adaptation 

that have a significant effect on how a scene will appear under various conditions.  In 

addition to dynamic range compression via thresholds and a linear operator Ferwerda 

modeled  rod response, color appearance, visual acuity, changes in achromatic contrast 

sensitivity  and changes in visual sensitivity over time.   

Color appearance changes due to the differences in relative spectral sensitivity 

of the rod and cone system over the photopic, mesopic and scotopic ranges of intensity 

levels (Figure 1.2).  In the scotopic range Ferwerda uses an operator based on the rod 

TVI (threshold-versus-intensity) data and monochromatic response.  In the photopic 

range he uses the cone TVI function. Finally, in the mesopic range he uses a linear 

combination of the rod and cone response. The TVI functions are experimentally 

measured and indicate the luminance difference between target and background 

necessary to detect the target over a full range of background luminances.       

 



 16

To model visual acuity and thus preserve resolvable detail in the display and 

scene observers Ferwerda uses Shaler’s [Shaler37] data for grating acuity as a function 

of background luminance.  This data gives the spatial frequencies that will be visible 

at a given adaptation level.  By removing all spatial frequencies (via a convolution) 

from the image that are below the maximum resolvable frequency, one can mimic the 

visual response.  This is done globally, whereas the eye adapts locally.  Also, this may 

not account for the actual appearance of a scene but it is the first such work and the 

basis for all work afterward [Ferwerda96]. 

Visual sensitivity over time can be encapsulated in two related phenomenon: 

light and dark adaptation.  We experience light adaptation going from a dark adapted 

state to a light adapted state.  Sensitivity takes a few seconds to come back and 

contrasts are reduced.  The same thing happens in dark adaptation but in reverse and 

over tens of minutes.  Physiologically, light and dark adaptation are due to bleaching 

and regeneration of photopigments and neural processes (see [Ferwerda96] for a brief 

review).  Ferwerda models both of these using a simple multiplicative gain control that 

changes over time. 

It has been noted by Ferwerda [Ferwerda96] that there is an important 

distinction among predictive operators.  There are those that address threshold 

appearance ( [Ward94], [Ferwerda96], [Ward97] ) and those that address 

suprathreshold appearance ( [Tumblin93] ).  The first approach scales suprathreshold 

values according to the threshold measure.  Therefore it may not capture 

suprathreshold appearance.  The latter may preserve the appearance of surfaces in the 

scene but fail to capture visibility near threshold.  An ideal predictive operator would 

account for both domains.  To my knowledge only one such attempt at both exists: 

Pattanaik’s [1998] multiscale model of adaptation, spatial vision and color appearance. 

 



 17

Ward, Rushmeier and Piatko extend the predictive visibility approach to tone 

mapping by introducing a novel histogram adjustment technique and models of glare, 

acuity and color sensitivity [Ward97].  Histogram adjustment is intended to overcome 

the  problems encountered if a single adaptation level and linear mapping are used, 

namely clipping and poor subjective appearance, while avoiding the computational 

cost of local operators.   

The histogram adjustment algorithm depends on the assumption that the eye 

quickly and locally adapts to a one degree view around a fixation point.  Ideally, one 

would want to take into account all possible fixations when forming a final global 

operator. In [Ward94] and [Ferwerda96] only a single adaptation level is chosen.  The 

algorithm is directly related to histogram equalization but uses contrast sensitivity data 

[Ferwerda96] to guide histogram changes.  First, a histogram (log approximation of 

brightness) of each one degree fixation point (forming a one degree foveal image) is 

made.  Then the global operator is formed by calculating the cumulative distribution 

function of the histogram.  However, the slope of the operator is constrained so that 

for each adaptation level JND’s are preserved.  Ward converts the constraint on the 

cumulative distribution function to a ceiling on bin counts in the histogram, which is 

enforced using an iterative procedure.  The algorithm is very efficient and produces 

good results for a range of scenes. 

Ward borrows his acuity and color sensitivity algorithms from Ferwerda 

[Ferwerda96].  Ferwerda’s color mapping is used without change.  However, acuity is 

modeled to take into account local adaptation, while Ferwerda applied a single global 

blurring function.  Local blurring is done according to the one degree foveal 

adaptation image using a mipmap image pyramid [Williams83] with actual luminance 

values rather than integer pixels.  At each pixel in the input image  the effective 

 



 18

adaptation level at the pixel is an interpolation of the four closest foveal adaptation 

samples.  Local acuity is derived from Shaler’s data [Shaler37].  

Glare is treated in terms of veiling luminance, the added effective luminance 

around bright lights and reflections due to scattering in the optics of the eye.  The 

operator is a direct application of Moon and Spencer [Moon and Spencer45], which 

computes an effective adaptation luminance using the one degree foveal average 

luminance, glare source position and illuminance.  The approach is novel because 

glare is included in a larger tone mapping context and effects how dynamic range 

compression, acuity and color sensitvity are calculated.  However, the glare model is 

missing a treatment of two phenomena: lenticular halos (radial bright lines)  and 

cilliary coronae (circular rainbow patterns) often seen when looking at bright lights at 

night [Spencer95]. 

 

In a departure from previous lines in predictive global operators, Pattanaik, 

Tumblin, Yee and Greenberg [Pattanaik00],  thoroughly address the time course of 

adaptation.  This includes light and dark adaptation.  However, all other desirable 

elements ( predictive ability with respect to acuity, threshold visibility and/or 

suprathreshold brightness and color saturation ) are left behind for the sake of 

simplicity and fast computation.  Also, the eye is idealized as having a uniform 

adaptation state. The operator is designed for automatic use with image sequences.  

Calculation proceeds in four steps.  Initially, rod and cone responses are 

estimated using the luminance based portion of Hunt’s visual response model 

[Hunt95]. Then time driven exponential filters are placed on parameters of the 

response model to simulate the response compression and bleaching associated with 

light and dark adaptation (see section on the psychophysical basis for adaptation).  

Next, the appearance model is applied.  This model assumes that the viewer estimates 

 



 19

scene intensities by comparing display intensities against mental estimates of 

reference white and reference black and is a linear mapping.  Finally, an inverse 

appearance model and inverse visual response model is applied giving displayable 

values.  Much further work is possible on the time course of adaptation.  First, 

including more of Hunt’s model of static color vision to include dynamic color 

adaptation is a clear path.  Second would be to add other effects like loss of acuity 

with light level, color sensitivity etc.  Finally, local adaptation could be considered. 

Unfortunately, no further adaptation time course work has been done.  

 

2.1.4 Predictive Local Operators 

 

Most local operators do not strictly take the processing of the HVS into 

account, but rather depend on a few observations about how feature appearance is 

preserved for an observer despite high dynamic range in real scenes.  However, in the 

first of two exceptions to this, Pattanaik, Ferwerda, Fairchild and Greenberg 

[Pattanaik98] develop a method that attempts to address the need for threshold and 

suprathreshold appearance in tone reproduction by using an explicit model based on a 

multi-scale decomposition of pattern, luminance and color processing in the HVS.  

This is important on two fronts.  First, as Ferwerda [Ferwerda96] noted there is a need 

for a visual match at threshold and at suprathreshold levels of illumination (This is the 

only work that tackles both).  Second, more local operators should incorporate data 

from the HVS, thereby adding a measure of validity and allowing broader use.  

Pattanaik et al. break ground in this area, but further work is most certainly needed.  

Their operator allows sufficient compression of high dynamic scenes but suffers from 

annoying halo artifacts due to the multi-resolution decomposition and subsequent 

 



 20

separate processing of each level (a fundamental problem with multi-resolution 

approaches) [DiCarlo00].   Also, the method is computationally intensive. 

The multiscale model of Pattanaik et al. can model threshold visibility, color 

discriminablity, and suprathreshold brightness, colorfulness (including chromatic 

adaptation), and apparent contrast over the full range of illumination levels.  This 

versatility was the product of a framework they developed that relates research on 

adaptation with research on spatial vision.  The result is a unified view of variations in 

threshold performance and suprathreshold appearance.  Processing is divided into two 

parts.  First, the visual model is applied to encoded perceived contrasts for chromatic 

and achromatic channels with their respective bandpass mechanisms.  Second, a 

display model is employed  which uses the response information to reconstruct an 

image appropriate for display on a CRT. 

Before Pattanaik et al. Jobson, Rahman and Woodell [Jobson97], adapted the 

retinex theory of color vision to make a spatially varying, multiscale tone reproduction 

operator designed to achieve dynamic range compression, color consistency and 

lightness rendition.   In terms of the more comprehensive framework of Pattanaik 

[Pattaniak98], Jobson et al. addressed suprathreshold appearance issues, while 

ignoring threshold measures.  Since Jobson’s model  depends on a multiscale 

decomposition it to suffers from halo artifacts.  Otherwise the method performed well 

over a range of test images with difficulty only with extremes of contrast and if the 

gray world assumption of the retinex theory were violated [Jobson97].     

 

2.1.5 Real-Time Operators 

 

Real-time operators are, for the most part, attempts to accelerate tone 

reproduction operators for use in interactive applications.  This is invariably done by 

 



 21

using graphics hardware.  Very little work has been done in this area.  The work that 

has been done has significant limitations with respect to the range of phenomena 

treated and the type of input assumed.  All existing approaches are restricted to 

radiosity solutions with luminance values at the vertices (texture and other forms of 

lighting can not be correctly included).  This is a significant restriction that rules out 

use for processing complex global illumination solutions, HDR images and video 

streams ([Debevec97],[IMS]) in real time 

The first work in real-time tone reproduction was done by Scheel, Stamminger 

and Seidel [Scheel00].  Scheel developed a tone reproduction operator for use in 

displaying radiosity solutions.  Radiosity values were stored at mesh vertices and tone 

mapped before display using one of Ward’s operators.  For each frame the adaptation 

level is chosen using a center weighted average to determine a plausible point of focus 

and ray tracing to get samples.  Either a luminance histogram is formed with these 

samples in the case of Ward [1997] or a single adaptation level is chosen in the case of 

Ward [1994].  The global operator is set using this information (see [Ward97] and 

[Ward94] ) and applied to the vertex radiosities.   Scheel’s operator only treats 

dynamic range compression and makes no attempt to include a full range of perceptual 

effects such as glare, acuity changes with light level,  color saturation, or time course 

adaptation.  Although good performance was achieved, the sacrifice in usefulness is 

significant.  Furthermore, because not all samples are updated each frame, there is an 

ad hoc time course model such that it takes some time for the operator to catch up to a 

new view. 

Durand and Dorsey [Durand00], approached real-time tone mapping similarly 

to Scheel.  A radiosity mesh with possibly high dynamic range values at the vertices is 

used for input and vertex values are tone mapped before display.  It suffers from the 

same limitations in usefulness as Scheel, but includes many more perceptual 

 



 22

phenomena.  Durand’s orperator is based directly on Ferwerda’s [Ferwerda96] and 

borrows Ferwerda’s threshold based contrast mapping, model for acuity, color 

appearance and time course adaptation.   The contrast mapping is accelerated on 

hardware by caching the final mapping function in a lookup table (although in their 

case this is not necessary, and other mappings beyond a global scale factor can be 

substituted). Adaptation level is chosen using photographic techniques (centered 

weighted average [Nikon00]) and  acuity calculations are done the same as Ferwerda 

but using hardware convolution to remove unresolvable frequencies from the final 

image.   

In addition to these phenomena, simple models of blue shift, and chromatic 

adaptation  are added.  With regards to blue shift, researchers have hypothesized that 

rod signals are interpreted as slightly bluish [Millerson91, Hunt52] .  Chromatic 

adaptation is that we tend to perceive objects as having a constant color even when 

observed under illuminants with various hues [Fairchild95].  Finally, an interactive 

glare model adapted from Spencer [Spencer95] is applied to light sources.  The glare 

algorithm restricts calculation to light sources and displays glare with textured 

polygons.  Overall, Durand skips major advances made in Ward’s [1997] work by 

focusing on Ferwerda’s [1996] work.  Improvements include nonuniform acuity 

calculations and Ward’s histogram adjustment algorithm.   

 

2.2 Related Work 

 

In addition to the work discussed in previous sections there is some related 

work worth pointing out.  First is a comprehensive glare operator by Spencer et al. 

[1995].  Spencer does a rigorous  treatment of glare including bloom and flare.  Next, 

is work in real time tone mapping by Cohen et al [2001].  Cohen tackles how to use 

 



 23

HDR textures on commodity hardware that doesn’t support floating point textures and 

shows how to apply an exposure before displaying the texture in the low bit depth 

frame buffer 

 

2.3 Summary 

 

The current tone mapping literature offers a wide variety of approaches.  

Researchers have attempted to accurately derive tone mapping operators to visual 

perception by using psychophysical data.  This approach can be described as 

predictive.  Other researchers have used subjective measures of correctness to gauge 

the success of their operators. This approach can be called preference based.  

Predictive operators have mostly addressed threshold measures of perception.  

However, a few have tackled suprathreshold measures or both suprathreshold and 

threshold measures.  Clearly, more work is needed to create an accurate predictive 

operator that includes both domains and is reasonably efficient.  This is a difficult 

problem because the HVS is not completely understood and the validity of 

psychophysical data outside of laboratory conditions is debatable.  Despite the need 

for work in predictive operators, the majority of recent work has been directed toward 

preference based operators and a number of high quality techniques have emerged 

based on high level descriptions of how the HVS functions overall.  For example, the 

HVS preserves detail over large dynamic and absolute ranges.  In the next chapter we 

discuss the aim of this current work in the context of the state of the art in tone 

mapping today.  We describe what we think is a next plausible step in the evolution of 

tone reproduction operators.  

 

 

 



 

Chapter 3 
 

Requirements and Basis for a New Operator 

 
The goals of this thesis are two-fold.  First, to create a widely applicable tone 

reproduction operator within real-time constraints that includes as many visual 

phenomena as possible and is predictive (i.e. has a basis in psychophysical data on 

vision).  Second, to apply this operator to low vision simulation by substituting data 

for normal subjects with data for visually impaired subjects.  The requirements for our 

new tone reproduction operator are determined by these goals.  This chapter explains 

why certain operators were chosen as a starting point for our real-time operator.  Other 

sections detail how real-time performance is achieved and what approximations or 

additions are made to the starting operators.  The previous chapters on past work 

(Chapter 2) will be useful for understanding the choices made herein. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.1:  A review of some target applications.  At left, architectural
walkthroughs and illumination engineering.  At center, flight/car simulators.  At
right,  high dynamic range video or photos of real environments.  A darkened
stairway is shown to emphasize use for low vision simulation. 

 

 

24



 25

A widely applicable  real-time tone reproduction operator should not impose 

limiting assumptions concerning the form of high dynamic range data input.  Input 

from simulation, high dynamic range photography [Debevec97] and streaming video   

[IMS03] should all be accommodated.  Basically, any source of high dynamic range 

pixels should be easily processed.  If the operator meets this criterion then applications 

in illumination engineering, architectural design, flight/automobile simulators, 

entertainment and real-time HDR video capture and processing are possible (Figure 

3.1).   

 Real-time performance means processing within frame time.  As data arrives 

the pictorial results are computed fast enough for smooth video, animations or 

hardware based computer graphics.  The minimum frame rate that would make the 

operator useful in all three domains is widely accepted to be approximately 10-15 fps 

[Bruce96].  However, some have put this as high as 17 fps to fully convey dynamic 

human facial information    [ Bruce96].  

 Most importantly, any basis for our operator must satisfy two requirements:  it 

must be predictive and amenable to acceleration.  The ability for an operator to be 

predictive is essential if it is to be useful in a vision simulation context. In this case, 

threshold measures take precedence over suprathreshold measures because the former 

predicts visibility which is of primary concern when, for example, evaluating a 

building for suitability with low vision individuals.  For a discussion of threshold and 

suprathreshold visual phenomena and tone mapping operators that include one or both 

categories see the  previous work section (Chapter 2).  The only published operators 

which satisfy both these requirements are threshold based predictive global operators, 

developed by Ferwerda [Ferwerda96] and Ward [Ward94, Ward97].   These operators 

have the required basis in psychophysical experiments and are readily accelerated (see 

Scheel [Scheel00] and Durand [Durand00] for examples of attempts to accelerate 

 



 26

[Ward97] and [Ferwerda96]) using graphics hardware.  This is due mainly to the 

global mappings used.  However, no single current real-time or off-line operator 

includes all relevant perceptual phenomena.  A comprehensive predictive threshold 

based tone reproduction operator should address all the phenomena illustrated in 

Figure 3.2.  We deem other phenomena like the perception of brightness, colorfulness 

and apparent contrast less crucial because they don’t directly affect visibility and more 

subtly affect appearance. 

 The following discussion refers to Figure 3.2.  Each phenomenon is 

discussed  in order from left to right and then top to bottom.  For a more detailed 

review of the psychology behind these and other phenomena refer to [Ferwerda98]. 

First, the human visual system (HVS) has limited sensitivity and so adapts 

over the range of world illumination levels in an attempt to preserve scene features.  

Slow varying large intensity changes are mostly ignored and small contrasts are 

preserved.  All work in tone reproduction hinges on this fact and thus most methods 

compress high dynamic range data in various ways in an effort to mimic this 

phenomenon.  Some use a single global mapping, others a spatially varying mapping, 

some are predictive and others are preference based.  For example, Figure 3.2a is from 

Fattal [2002], a preference based local operator.  On the left hand side of the image are 

multiple exposures which can be contrasted with the tone mapped result on the right. 

We require a predictive global operator with a threshold based criterion for 

dynamic range compression.  Visibility is our foremost concern.  Of the three 

candidates mentioned previously Ward [1997] stands out as the best choice.  

Ferwerda’s work [Ferwerda96] is based on Ward’s [1994] and Ward’s newest work 

updates Ferwerda’s.  It represents the current state of the art in predictive global 

operators.  Ward’s main improvement is a histogram adjustment algorithm for 

dynamic range compression [Ward97].  It is a widely applicable visibility preserving 

 



 27

algorithm: it preserves just noticeable differnences (JNDs) in luminance in the real 

scene on a CRT display over many localized adaptation levels.  Instead of a global 

scale factor and it’s associated disadvantages (clipping and poor subjective 

appearance) a histogram is formed from local adaptation estimates and is used to make 

the mapping.  The results are far superior to previous global operators and the 

algorithm is still very efficient.  Thus, our basis for dynamic range compression is 

Ward’s histogram adjustment algorithm. 

 The effects of glare are very important for predicting visibility and correct 

subjective appearance in scenes with light sources that are bright relative to the 

ambient light level.  It can be described by two main phenomena flare and bloom.  

Flare (Figure 3.2b) consists of a cilliary corona and a lenticular halo and is due 

mostly to the lens.  The cilliary corona exhibits as radial lines emanating from the 

center of bright light sources and is caused by semi-random density fluctuations in the 

nucleus of the lens which scatters light.  The lenticular halo is a set of concentric 

colored rings beyond the cilliary corona caused by diffraction in the fibers at the 

radial edge of the crystalline lens.  Bloom (Figure 3.2c) is due to scattering of light in 

the cornea, lens and retina. It produces what is known as veiling luminance because 

the extents of the light source are effectively spread out and contrast is reduced in the 

region of spread.  Of existing operators only Ward [Ward97] and Spencer [Spencer95] 

treat glare rigorously.  Ward concentrates on veiling luminance while Spencer 

simulates both phenomena.  The images in figure two show Spencer’s glare kernel 

(See [Spencer95] for details) and its application to a bright indoor light.  For our 

purposes, veiling luminance is all that is required, since this is the dominant factor in 

determining visibility.  Secondary appearance effects caused by the  cilliary corona 

and lenticular halo can be considered as computational resources permit.   For this 

reason, Ward’s work is a  good  starting  point.  Also,  Ward’s  glare  operator  has  the  

 



 28

 

 

 

 

 

 

 

 
 
Figure 3.2:  Visual phenomena as modeled in various work.  Image a) shows 
adaptation/ contrast visibility.  The image shows the results of using three different 
exposures and compares them to a tone mapped version [Fattal02].  Glare consists of 
two effects: flare and bloom.  Flare b) is due to the structure of lens and has two 
components, the cilliary corona (radial lines) and the lenticular halo (rainbow 
surround). Bloom (c) is caused by scattering in the cornea, lens and retina 
[Spencer95].  The acuity of the visual system is worse at scotopic light levels than 
photopic levels.  It is gauged by the highest spatial frequency square wave grating 
visible at a given background luminance level. The top image (d) is at 0.1 cd/m^2 and 
the bottom (e) is at 1 cd/m2 [Pattanaik98].  Color sensitivity is lost starting at mesopic 
down to scotopic levels.  Images g) and f)  show color appearance with daylight and 
moon light [Ferwerda96].  Images h) and i) show chromatic adaptation for red and 
green light [Pattanaik98].  Image j) illustrates a theorized blue shift for night scenes 
[Jensen00].  The time course of adaptation can be described by two related 
phenomena, light adaptation (k) and dark adaptation.  It takes a few seconds up to 
many minutes for our visual system to adjust to changes in light level (starting from a 
dark or light adapted state) [Pattanaik00].  

 

 

 

 

 

 

 

 

 



 29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 30

advantage that it treats veiling luminance in the context of tone reproduction.  Veiling 

luminance is taken into account when determining scene viewer adaptation state so 

glare effects the computation of the global operator.   

 The acuity of the HVS changes with adaptation level (Figure 3.2d,e).  Chapter 

5 has a brief review of the science behind this phenomenon.  Of the threshold based 

operators only Ferwerda [Ferwerda96] and Ward [Ward97] attempt to deal with 

changing acuity (see previous work).  Ferwerda does a global acuity calculation and so 

misses local variation in acuity.  Ward improves upon Ferwerda by blurring locally 

based on a foveal adaptation image [Ward97].  Thus, Ward offers an important 

improvement over Ferwerda as starting point for acuity modeling.    

 In addition to acuity change over light level, the perception of color changes as 

well.  Color appearance changes due to a change in spectral sensitivity of the HVS 

over the photopic, mesopic and scotopic ranges of adaptation levels (Figure 3.2f,g) 

caused by differences in relative spectral sensitivity of the rod and cone system.  Both 

Ferwerda and Ward use the same mapping for color, a combination of rod and cone 

response depending on the range of adaptation level.  We chose to use this mapping as 

well.  The two renderings of the MacBeth color checker chart [Ferwerda96] illustrate 

color perception at moonlight (Figure 3.2f) and at daylight (Figure 3.2g) adaptation 

levels.  For the moonlight level the intensity is changed to accentuate the color 

differences.  The actual picture would be much darker. 

 Visual sensitivity over time can be described by two related phenomena: light 

and dark adaptation.  We experience light adaptation going from a dark adapted state 

to a light adapted state.  Sensitivity takes a few seconds to come back and the world 

appears uncomfortably bright and desaturated until it does (Figure 3.2k).  We 

experience dark adaptation going from a light adapted state to a dark adapted state.  

Initially, sensitivity is very low and we are temporarily blind then it slowly increases 

 



 31

over about 35 minutes as the rod and cone system adapt.  At the start sensitivity is 

dominated by the cone system until the sensitivity of the rod system surpasses it after 

about 7 minutes.  The quick change in sensitivity seen in light adaptation and at the 

start of dark adaptation can be explained by a multiplicative gain control process in 

which the receptor input is scaled by a constant related to the background luminance.  

The slow recovery of sensitivity seen in dark adaptation can be explained by a 

subtractive process in which the base response caused by a constant background is 

reduced [Ferwerda96].   

We refer to these changes as the “time course” of adaptation and it is 

absolutely vital for any real-time operator because time course adaptation changes are 

often dramatic, as we know from experience. Ward does not tackle time course 

adaptation.  Ferwerda models both light and dark adaptation using a simple 

multiplicative gain control that changes over time.  Pattanaik [Pattanaik00] however, 

more thoroughly addresses the phenomenon with a more sophisticated rod and cone 

response model based on Hunt’s model of color vision [Hunt95] in addition to a 

multiplicative gain control for both rods and cones.  Although more sophisticated, 

Pattanaik’s work is designed for real-time use in animations or walkthroughs because 

it uses a global rather than local response model.  Thus Pattanaik’s operator is ideal for 

addressing the time course of adaptation.  However, it is not useful in the context of a 

tone reproduction operator based on histogram adjustment and contrast sensitivity 

because it just displays the result of the rod and cone response curves without taking 

into account the mapping of JND’s in the scene to JND’s on the display.  Thus, it may 

be accurate with respect to estimated visual response over time but won’t insure 

correct visibility, a key goal of our operator.  So instead of building directly upon 

previous work we construct our own time course model that attempts to be automatic, 

real-time and include heretofore unseen local adaptation effects.   

 



 32

Now, given the outlined requirements and starting point based on the current 

tone mapping literature, do any current real-time implementations fit our requirements 

?  No.  There is no such operator.  The only attempts are Scheel [Scheel00] and 

Durand [Durand00].  Scheel’s operator only treats dynamic range compression and 

makes no attempt to include a full range of perceptual effects such as glare, acuity 

changes with light level,  color appearance changes, or the time course adaptation.  

Furthermore, applicability is limited due to a restriction on input to radiosity solutions 

with radiosities stored at  vertices.  Durand’s operator is also limited to radiosity 

solutions though he attempts to be more comprehensive in modeling perceptual 

effects.  His work is based largely on Ferwerda’s 1996 paper and its performance 

depends on the number of primitives in a radiosity solution. Another problem with 

Durand’s work is that he didn’t use commodity graphics hardware but rather a Silicon 

Graphics Onyx2 Infinite Reality using one R10K processor.  Finally,  since Durand 

doesn’t attempt to use the updated acuity or dynamic range compression found in 

Ward’s 1997 paper it is not useful for our purposes.  Neither work can accommodate 

our need for a widely applicable real-time tone reproduction operator that includes as 

many visual phenomena as possible and is predictive.  However, the use of hardware 

is essential to their performance gains.  One difficulty that Sheel and Durand both 

faced was that a high dynamic range pixels could not be processed on the hardware 

and very limited calculations were allowed per fragment [OpenGL].  In the current 

generation of commodity hardware, textures with RGB bit depths of 16 bits are 

allowed.  This advance will allow a purely HDR image based operator.  In addition, 

advances in fragment shader technology allows much more sophisticated per fragment 

operations.  We intend to use commodity hardware because of its wide availability and 

new found flexibility.   

 



 33

In the next two sections we discuss the current state of the art commodity 

hardware and  then discuss our new real-time operator in this context.  The operator is 

largely based on Ward’s 1997 histogram adjustment algorithm.  Care is taken not to 

sacrifice the validity of our operator with poor approximations and assumptions; a 

problem which has affected past real-time work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4 
 

Capabilities of Current Commodity Graphics Hardware 

 
In this section we review the current state of the art in commodity graphics 

hardware.  We begin with a brief account of the evolution of these devices.  Then we 

discuss in more depth those components which have proved useful for accelerating our 

tone reproduction algorithm.  For detailed information on current hardware see the 

ATI and NVidia web sites ([ATI],[NVidia]) and the OpenGL 1.4 ARB specification 

[OpenGLSpec]. 

 The history of commodity graphics hardware is not very long.  Just ten years 

ago specialized devices on Silicon Graphics workstations dominated the graphics 

world and companies like NVidia were just starting out.  Beginning in 1996 higher 

end commodity graphics hardware (the NVidia Voodoo 3Dfx in particular) 

implemented the Phong lighting model and Gouraud shading algorithm completely in 

hardware.  Then in 1999 NVidia’s GeForce256 also accelerated the transformation 

and lighting of vertices in hardware.  The central motivation for moving functionality 

to the graphics hardware was to overcome limited bandwidth between the CPU 

(Central Processing Unit) and graphics board.   The next evolution happened in 2001 

with the advent of the NVidia GeForce3 graphics card and its GPU (Graphics 

Processing Unit), which allowed graphics programmers to control the transformation 

and lighting of vertices and fragment operations through assembly language programs.  

Before this only very limited control could be exercised over both the vertex and 

fragment pipelines.  These highly parallelized hardware implementations became 

extremely fast and the challenge then became tailoring algorithms to fit graphics board 

architectures.  

 34



 35

In the current generation of graphics hardware, vertex and fragment programs 

have become increasingly sophisticated with regards to available operations and how 

programs are written.  High level API’s like NVidia’s  Cg (C for graphics) [Mark03] 

and Microsoft’s HLSL (High Level Shading Language)[HLSL] have been developed 

to simplify programming GPU’s.  Other core improvements include extended  

precision throughout the graphics pipeline, floating point P-Buffers and floating point 

textures.  Given this new found flexibility and the fact that performance of graphics 

hardware doubles about once every twelve months, these devices have also found uses 

other than traditional computer graphics, providing high-performance platforms for 

image processing and numerical algorithms ( see [Bolz03] and [Kruger03]  ).    

 We use the new found capabilities of modern graphics hardware to allow the 

implementation of our predictive real-time tone reproduction algorithm.  The specific 

capabilities critical to our implementation are floating point textures, P-Buffers, 

automatic hardware mipmapping and fragment shaders.  Each is described throughout 

the remainder of this chapter.  Detailed examples of code are in Appendix A.   

 

4.1 Floating Point Textures 

 

Floating point textures are hardware textures with floating point values for the 

R,G,B and A channels.  These textures are available through the same mechanism as 

normal 8-bit textures, the only difference is that  the components argument is set to 

GL_RGB16 or GL_RGBA16 to get 16-bits of precision per channel.  Sample code that 

gives the OpenGL function call for creating a 2D texture and the appropriate 

arguments for creating a floating point texture are shown in Appendix A1. 

 

 



 36

4.2 P-Buffers 

 

P-Buffers are off screen pixel buffers available through the OpenGL extension 

WGL_ARB_pbuffer.  Extensions are explained in the OpenGL extensions 

specification [OpenGL].  An extension name is divided into three parts.  The first part 

can be GL (standard OpenGL), WGL (Windows OpenGL), or GLX (Xwindows 

OpenGL) and it describes the context in which the extension is available: cross 

platform, windows, or Xwindows.  The second part describes who has approved or 

created a given extension.  For instance ARB extensions are those approved by the 

OpenGL Architecture Review Board.  Other examples are EXT (not ARB approved), 

SGIS (Silicon Graphics),  WIN (Windows), IBM, HP, INTEL, ATI and NV (Nvidia) 

to name a few.  

When WGL_ARB_pbuffer is used in conjunction with the WGL_ARB_pixel_ 

format extension, they enable hardware accelerated off screen rendering.  The contents 

of the P-Buffer can then be read back or bound as a texture with WGL_ARB_render_ 

texture for use in cube maps [OpenGL] or dynamically changing textures.  The newest 

P-Buffers ( Radeon 9700) allow floating point values.  These features were used for 

the ‘Rendering With Natural Light Demo’ at SIGGRAPH 2002 [Natural] which 

showcased the use of HDR textures for increased realism in hardware rendering.  

Appendix A2 shows a block of code that creates a 16-bit float P-Buffer in an OpenGL 

rendering context.  For an explanation of the functions involved see the MSDN online 

library and the OpenGL 1.4 Specification.  For a primer see the NVidia web site 

[NVidia].  Comments in the code describe each step in the process of creating a simple 

floating point P-Buffer.  

To create a P-Buffer in Windows, the current device context (a reference to the 

graphics hardware being used) must be retrieved along with the current OpenGL 

 



 37

rendering context.  Next, parameters for the P-Buffer such as the number of channels, 

bit depth of each channel, and modes of operation are selected.  This is done by 

specifying the desired parameters and then querying the current device context to see 

if what you want is available.  If the P-Buffer format desired exists a new P-Buffer 

will be created.  Then a device context is retrieved for the new P-Buffer and a new 

rendering context is created based on the device context.  Once this has been done all 

OpenGL calls will apply to either the standard or the P-Buffer rendering context 

depending on which is selected at the time.  Switching between rendering contexts is 

done using the wglMakeCurrent function.  Textures can be shared between contexts 

using the wglShareLists function. 

 

4.3 Automatic Hardware Mipmapping 

 

This OpenGL extension allows a programmer to specify a texture and let the 

hardware calculate the mipmap levels on the fly.  Each time the texture is updated the 

mipmaps are recalculated.  Specifying hardware mipmapping is straight-forward and 

also works for 16-bit depth textures (on Radeon 9700 and new graphics boards).  

Appendix A3 shows a block of OpenGL code that sets up a 16-bit texture for hardware 

mipmapping.  Further details can be found under ‘Automatic Mipmap Generation’ in 

the OpenGL 1.4 Specification.  It has been promoted from the GL_SGIS_gener-

ate_mipmap extension which is used in the code shown in Appendix A3 so that  all 

one needs to do now is set the texture parameter GENERATE_MIPMAP  to TRUE.  The 

example in Appendix A3 traces the standard formation of an OpenGL texture enabled 

for hardware mipmapping.  First a texture object is created and bound as the current 

texture.  Next standard magnification and minification filters, and texture wrap 

parameters are set for the texture.  Then, assuming that we are using the 

 



 38

GL_SGIS_generate_mipmap extension, we first request GL_NICEST as a hint 

(suggestion) to the card to make the highest quality mipmaps possible.  Then we set 

the base level, an integer identifier that refers to the bottom level of the mipmap and 

the maximum level which gives the final level to be calculated during mipmap 

formation.  Finally,  the texture parameter GL_GENERATE_MIPMAP_SGIS is set to 

TRUE and the texture is formed. 

 

4.4 Fragment Shaders 

 

The capabilities of fragment shaders have moved from simple texture 

combination operations and lookups to a powerful complement of assembly language 

operations.  Furthermore with the development of high level APIs, creating custom 

programs is relatively quick.  The newest specification, approved by the OpenGL 

Architecture Review Board, is the GL_ARB_fragment_program in the OpenGL 1.4 

specification. Table 4.1 below has a list of the commands available.  Information on 

fragment operations, syntax, and conventions is also summarized in Table 1.  We will 

only discuss in detail those commands which are relatively new to fragment programs 

and enable a much wider range of capabilities.   
 
 
 
Table 4.1:  Summary of fragment program instructions.  "v" Indicates 
a floating-point vector input or output, "s" indicates a floating-
point scalar input, "ssss" indicates a scalar output replicated 
across a 4-component result vector, "ss--" indicates two scalar 
outputs in the first two components, "u" indicates a texture image 
unit identifier, and "t" indicates a texture target.  There are 33 
fragment program instructions. 
 
     Instruction    Inputs  Output   Description 
     -----------    ------  ------   -------------------------------- 
      ABS            v       v        absolute value 
      ADD            v,v     v        add 
      CMP            v,v,v   v        compare 
      COS            s       ssss     cosine [-PI,PI] 

 



 39

      Table 4.1 (Continued)       
      DP3            v,v     ssss     3-component dot product 
      DP4            v,v     ssss     4-component dot product 
      DPH            v,v     ssss     homogeneous dot product 
      DST            v,v     v        distance vector 
      EX2            s       ssss     exponential base 2 
      FLR            v       v        floor 
      FRC            v       v        fraction 
      KIL            v       v        kill fragment 
      LG2            s       ssss     logarithm base 2 
      LIT            v       v        compute light coefficients 
      LRP            v,v,v   v        linear interpolation 
      MAD            v,v,v   v        multiply and add 
      MAX            v,v     v        maximum 
      MIN            v,v     v        minimum 
      MOV            v       v        move 
      MUL            v,v     v        multiply 
      POW            s,s     ssss     exponentiate 
      RCP            s       ssss     reciprocal 
      RSQ            s       ssss     reciprocal square root 
      SCS            s       ss--     sine/cosine without reduction 
      SGE            v,v     v        set on greater than or equal 
      SIN            s       ssss     sine with reduction to [-PI,PI] 
      SLT            v,v     v        set on less than 
      SUB            v,v     v        subtract 
      SWZ            v       v        extended swizzle 
      TEX            v,u,t   v        texture sample 
      TXB            v,u,t   v        texture sample with bias 
      TXP            v,u,t   v        texture sample with projection 
      XPD            v,v     v        cross product 

 

The core operations that make acceleration of Ward [1997] possible are LG2, 

EX2, TEX, TXB,  RCP and POW [ARB02].  In later chapters we will discuss the 

details of how these operations are used in the implementation of our tone 

reproduction operator. 

LG2 approximates the base 2 logarithm of the scalar operand and replicates it 

to all four components.  Thankfully, the log base 2 of variable x can be related to the 

natural logarithm and log base anything with a proportionality constant.  For example 

we can get ln(x) from log2(x)  by the relation  ln(x) = log2(x)/log2(e). 

EX2  approximates two raised to the power of the scalar operand and replicates 

the approximation to all four components of the result vector.  We can get an 

approximation to the exponential by computing EX2(x/ln(2)). 

 



 40

TEX takes the first three components of its source vector and maps them to 

texture coordinates s, t and r.  These coordinates are used to sample from the specified 

texture target on the specified texture image unit in a manner consistent with its 

parameters. 

TXB does the same thing as TEX except the fourth component is used to 

further set the level of detail mipmap bias of a sampled texture.  This mechanism 

provides per fragment level of detail control. 

POW approximates the value of the first scalar operand raised to the power of 

the second scalar operand and replicates it to all four components of the result vector. 

RCP approximates the reciprocal of the scalar operand and replicates it to all 

four components of the result vector. 

The use of fragment programs is straight forward and is much like using 

textures.  A fragment program ID can be requested and then the program can be bound 

to become the current program.  Fragment shader commands will then apply to the 

currently bound fragment program.  A sample program is shown in Appendix A4 to 

illustrate what functions are used.  Comments within the sample code provide 

explanations for what is happening.  

 

4.5 Summary 

 

 The current set of tools available on graphics boards allows for a wide range of 

computations not restricted to 3D graphics.  Image processing and other numerical 

methods can be implemented and accelerated using graphics hardware architectures. 

In the next chapter we detail how the capabilities of  current commodity graphics 

hardware showcased here are used in the context of accelerating a tone reproduction 

operator. 

 



 

Chapter 5 
 

Hardware Acceleration 
 

The tone reproduction operator that we build uses Ward’s [1997] histogram 

adjustment dynamic range compression algorithm, as well as his glare, color and 

acuity models as a basis.  Each component is accelerated either using current 

commodity hardware functionality or approximations to speed up calculations. The 

primary means of acceleration is the use of a central fragment program which receives 

and processes acuity, glare, color sensitivity and mapping data for display.  Hardware 

functionality like mipmapping, multi-texturing are also used.  In addition to 

acceleration we also build a novel dark and light adaptation model inspired by 

psychophysical data and the work of Pattanaik [1998].    

In this section we discuss the details of each component of the algorithm, 

starting with a high level view.  For a sketch of Ward’s operator see the section on 

previous work.  The algorithm is summarized in Figure 5.1. 

Our explanation will follow the order of Figure 5.1.  However, the order is not 

fixed.  The veiling luminance can be added before or after the blurring function since 

it varies slowly over the course of the image.  Also, the color sensitivity function can 

be applied anywhere after the veil is computed and before histogram adjustment.  

After discussion on the core operator we explore how the algorithm can be modified to 

include the time course of adaptation.  Both dark and light adaptation are treated and 

offer significant improvements over previous work ([Ferwerda96],[Pattanaik00]). 

 

 

 

 41



 42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Ward Overview 
 

Figure 5.1: An overview of Ward’s histogram adjustment algorithm with glare, 
acuity and color sensitivity.  Steps highlighted in red are those that benefit from 
the use of graphics hardware.



 43

5.1 Input Images 

 

Input is in primarily in the form of 2D floating point arrays.  We have used 

Ward’s rgbe format [RGBE] for storing HDR images, which are then read into arrays 

at startup before processing.  Since we are using hardware, one additional piece of 

information is needed for each frame.  A global scale factor must be chosen that 

normalizes the input into the range 0.0-1.0.  The reason for this is that values in 

OpenGL hardware textures must be within this range.  If no normalization factor is 

provided it could be quickly estimated by randomly sampling the image and picking 

the highest value encountered.   

Input can also come from hardware based renderings.  In this case the results 

will already be in the range 0.0-1.0 and the result must be made available for 

processing in our algorithm by rendering to a floating point P-Buffer and then binding 

this as a texture using the Render to Texture facility in OpenGL.  However, in order 

for processing of color and acuity to be done correctly a scale factor that relates the 

rendered values to physical values must be provided. 

Once in texture memory, input is displayed by texture mapping a screen- 

aligned grid of polygons.  The resolution of the grid corresponds to the resolution of 

the foveal adaptation image because glare and acuity information are determined 

based on the foveal image and must be linearly interpolated to get data for each pixel 

of the original image.  Storing glare and acuity data in the texture coordinates of the 

grid gives automatic interpolation in the graphics hardware.  We will discuss the 

polygon grid in detail later in this chapter. 

 

 



 44

 

5.2 Foveal Image 

 

All subsequent steps in the algorithm depend on the initial calculation of a  

foveal image, which is an averaged version of the original image with the property that 

each pixel subtends roughly one degree of solid angle.  Each pixel corresponds to a 

potential foveal fixation point.  It is assumed that adaptation for the best view occurs 

in the fovea and that this adaptation should be simulated over the extent of the image 

as if the observer is looking directly at each point in the image.  

 For an input image created using a linear perspective projection the foveal 

image resolution can be determined by the following formula: 

 

                                   ( ) 01745.0/2/tan2 θ=S       (Eq. 5.1) 

 

where S = width or height in pixels of the foveal image, θ  = horizontal or vertical full 

view angle, and 0.01745 = the number of radians in one degree.  Ward computes the 

foveal image by using a simple box filter. 

 In our operator there are three different ways to compute the foveal image.  

The first follows Ward and performs the box filtering in software.  To do this quickly 

we use the Intel Image Processing Library function ippiResize_32f_C3R. The 

second method uses the graphics hardware exclusively and computes the foveal image 

as a side effect of creating a custom mipmap pyramid for use in acuity calculations.  

This process is shown in Figure 5.5.  When a mipmap level with resolution above that 

of the foveal image is created a separate pass is executed to compute the foveal image 

at the correct resolution.  The image is then read back from the P-Buffer into a 

software array.  Then the mipmap creation continues as normal.  The third way uses 

 



 45

both hardware and software.  Box filtered mipmaps can be automatically created by 

the graphics hardware with automatic mipmap creation routines.  Then the mipmap 

level nearest the foveal image can be read back and resized in software.  All three 

methods are very fast and thus execution time is not an issue.  However, computing 

the foveal image completely in software is more effective because full accuracy is 

maintained.  Reading back from a 16-bit depth texture can lead to luminance values of 

zero in the foveal image, which must be clamped to the minimum visible luminance.  

However, this artificially increases the dynamic range. 

 

5.3 Veiling Luminance  

 

Ward’s veiling luminance calculations are directly from the work of Holladay 

[1926] and Moon and Spencer [1945].  Moon and Spencer’s approach is appropriate 

for an operator that depends on a foveal adaptation image because they relate the 

effective adaptation luminance to the foveal average via the glare source position and 

illuminance.  Veiling luminance is calculated for the low resolution foveal image and 

then added back to the foveal image to get an effective adaptation image for use in  

contrast, color and acuity models.  To add veiling luminance to the original image 

the foveal image values are bilinearly interpolated to find individual pixel values.  

 An overview of how Ward calculates veiling luminance is given in Figure 5.2. 

To compute the veiling luminance Ward uses a discrete formula adapted from Moon 

and Spencer [1945].  For large foveal images (images with large view angles) this  

calculation is the most expensive operation due to the O(n2) running time.  Although 

the veiling luminance calculation would be much faster than if the operator was 

applied to the entire image as in Spencer [1995], it is still inadequate for real-time  

 

 



 46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5.2: Overview of Ward’s veiling luminance operator. 
 

 

 



 47

performance in many cases.  Thus for our purposes, changes must be made to speed up 

the calculation.  These can be in the form of optimizations and/or approximations. 

 The first property to notice about this operator is that it is effectively a 

convolution operation with a kernel that is not constant over the extent of the image  

(Figure 5.3).  This fact keeps us from being able to store just one fixed kernel which 

can be reused for every foveal sample.  Instead,  the cosine terms must be recalculated 

for each  sample  over  the  entire  image.   It  would  be  a  big  gain  to avoid this.  To  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3:  Two slices of the veiling luminance effective convolution kernel.  Plot
1 shows the filter for a foveal sample 0.4369 radians from the center of the image. 
Plot 2 shows the filter for a pixel at the center of the image. 

 

accomplish this we combine the approach of Ward [1997] and Spencer [1995] by 

computing veiling luminance with the foveal image but using Spencer’s fixed 

convolution kernel.   

 Despite the improvements in speed one gets from implementing the veiling 

luminance calculation as a convolution with a fixed filter, performance is often still 

not real time for large foveal image resolutions. Much better results can be had by 

 



 48

intelligently choosing the kernel size and foveal image resolution used for 

convolution. We could have a constraint on the computation time which determines 

what size kernel can be used or how much the foveal image can be downsized before 

the convolution is done.  Either choice will introduce some error.  In our experience 

the error due to an insufficiently large kernel is more significant because the extents of 

bloom are limited if the kernel is too small.  Using a downsized foveal image gives 

much better results.   

To balance both of these dimensions we need to determine on the fly how large 

of a kernel is needed for a given foveal image.  This determination should be able to 

predict the perceptual quality of the result.  For example, will the scene viewer notice 

the difference between a larger or smaller kernel.  Given this information we can then 

check if the amount of computation is tolerable.  If not, then we downsize the foveal 

image and if the foveal image is still bigger than the kernel size we again compute the 

necessary kernel size.  Otherwise, we use the chosen kernel with the downsized foveal 

image.  Finally, if a downsized image is used, we get the approximate veiling 

luminance image by bilinearly interpolating the lower resolution image. 

To determine the kernel size needed for a given foveal image we use a 

perceptually-based metric.   The idea is that we want a gauge of how far from a given 

image pixel the kernel must extend such that the luminance veil due to blooming is 

noticeable by a human observer.  If the foveal image doesn’t have too many outliers 

then a worst case scenario is to assume the pixel in question is at the minimum 

luminance for the image.  Then we measure the contribution from a solitary foveal 

sample at the maximum luminance some number of pixels away.  If the veil is below 

threshold for just noticeable contrast differences then the kernel is too large.  If the 

correction is above the threshold, the kernel is too small.  We want the kernel that 

 



 49

gives us the closest result to the threshold of noticeable difference.  In pseudocode, the 

procedure is as follows: 

 

SelectKernelSize() 

                  For Discrete values of the normalized kernel radially 

            outward 1…N  

   Compute the weighted contribution: Lwmax*kernelVal 

         Compute the veil correction: (contrib + 0.913*Lmin) – Lmin 

   Find visibility threshold for a background Luminance Lmin 

          using contrast sensitivity data  

     Find kernel value that gives the closest match to threshold 

   Record distance from center of kernel in pixels which is the 

kernel resolution needed  

      End 

  

Given the use of a fixed kernel and the perceptually based metric just 

described, we can manage the computation time so as to reach a target frame rate and 

still maintain quality results.  The metric proved useful only when foveal image 

resolution was high, otherwise a full convolution was not too expensive for real time 

performance.  Finally, after determining kernel size the covolution is done using the 

highly optimized Intel Image Processing Library and the veil is added to the foveal 

adaptation image.  Compositing the veil with the original HDR image is done by 

storing veil image samples in texture coordinates and then sampling them in the 

fragment shader.  Multitexturing must be used because acuity data is also stored in 

texture coordinates.  It should be noted that using texture coordinates to store the veil 

data is more favorable than using vertex color because it affords more precision.     

 



 50

5.4 Local Acuity Blurring 

 

Ward bases his acuity determination on Shaler’s [1937] data which measures 

the relationship between adaptation level and foveal acuity through subject studies.  

He uses the following functional fit to Shaler’s data: 

 

                      72.25)35.0)(10log4.1arctan(25.17)( ++⋅⋅≈ aa LLR               (Eq. 5.2) 

 

where  = visual acuity in cycles/degree,  = local adaptation luminance.  

Local acuity is determined for each pixel of the foveal adapation image.  To allow for 

local acuity variation Ward implements blurring using a mipmap structure 

[Williams83] and interpolation.  However, in this case the levels of the mipmap are 

the physical luminance values. 

)( aLR aL

  Mipmap level determination for each foveal sample is done using the camera 

parameters for the scene and the resolution of the image being processed.  The lowest 

level of the mipmap is the original image.  This image is a sampled version of the 

scene, thus as long as the viewer’s acuity is above this sampling rate, we can use the 

base mipmap level.  This baseline sampling rate is given by: 

 

                 θ/5.0 resolutionR ⋅=               (Eq. 5.3) 

 

where R = the sampling rate in cycles/degree, resolution = the x or y pixel resolution 

of the image, and θ  = the x or y axis viewing angle in degrees.  If the viewer’s local 

acuity falls below the sampling rate of the base level we determine the mipmap level 

by equating the viewer’s acuity with the corresponding, possibly interpolated, mipmap 

level.  For  hardware mipmapping we note that mipmap level is given as a value  lm

 



 51

from 0.0 to the highest level (for example, for a base resolution of 512x512  ranges 

continuously from 0.0 to 9.0).   can be determined with the relation: 

lm

lm

m→

 

                                   )/(2log
2

xRRx lml
==          (Eq. 5.4) 

Where,    

x  =  the acuity at a given foveal sample. 

 

To accelerate the acuity calculations (Figure 5.4) we can take advantage of 

hardware mipmapping or our own custom mipmap generation (Figure 5.5).  Automatic 

hardware mipmapping has the advantage that it is faster and easy to use.  However, 

only box filtering is available.  Our custom mipmapping requires multiple passes but 

allows the use of custom filters for downsizing subsequently higher mipmap levels.    

Once the mipmaps are formed the mipmap bias (level) can be specified for each foveal 

sample by setting an unused component of the texture coordinates to the bias values.  

Then, when further processing is done for compositing the veil, calculating color 

sensitivity, and histogram adjustment in the fragment shaders, we will have access to 

interpolated bias values over the entire image (per pixel level of detail control). This is 

due to the fact that texture coordinates are automatically interpolated in hardware.  In 

the fragment shaders, we use the TXB operation as discussed in the hardware 

capabilities section to sample the mipmap and pass our texture coordinate as a level of 

detail bias. 

 Custom mipmap generation including a step for computing the foveal 

adaptation image is illustrated in Figure 5.5.  It is a multi-pass and efficient algorithm 

for computing mipmaps with custom filtering for successive mipmap levels done in 

the fragment/pixel shaders.  Input is either a HDR texture, HDR video stream or  

 

 



 52

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
Figure 5.4:  An Illustration of hardware accelerated local acuity blurring based on
Ward’s [1997] acuity calculations.  The foveal adaptation image from Ward’s
histogram adjustment algorithm is converted to a mipmap bias image using
Shaler’s HVS acuity data.  This bias image is then stored at the vertices of a screen
aligned polygon grid in texture coordinates.  A mipmaped HDR texture input is
then texture mapped onto the grid and the mipmap level is chosen for each pixel by
utilizing fragment shaders. 

 

 



 53

rendered in hardware.  If input is a texture or video stream it is used to set the lowest 

mipmap level directly from software or texture memory.  If the input is hardware 

rendered then it is rendered to a floating point P-Buffer and then read back using 

glCopyTexSubImage2D( ), which is an operation that keeps all data transfer on the 

card and thus has little overhead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5:  Custom acuity mipmap generation algorithm shown for a sample 
texture of 128x128.  Foveal image formation is also illustrated in Pass 2a.   

 

 Once the lowest mipmap level is set, successive levels are derived by rendering 

to a P-Buffer in a region that is half the resolution of the current level and then reading 

back into the mipmap pyramid via glCopyTexSubImage2D( ).  Fragment shaders are 

 



 54

used to sample the texture and filter with whatever weighting is desired.  To get 

samples at each pixel that include all surrounding pixels we offset the texture 

coordinates of our starting level to allow overlap.  If one of the overlap textures does 

not cover a given pixel the edge values are extended by setting the texture parameters 

GL_TEXTURE_WRAP_T and GL_TEXTURE_WRAP_S to  GL_CLAMP.  An illustration of a 

five sample version is show in Figure 5.6.  Nine samples are also possible and this is 

what we use in our final implementation coupled with gaussian filter weights.  The 

empty white P-Buffer pixels as seen in the diagram will have repeated values from the 

edge of the texture.  To make sure that sampling is adequate  

GL_TEXTURE_MIN_FILTER should be set to GL_LINEAR. Otherwise, the hardware will 

simply point sample the four incoming texels giving poor results. 

 When the mipmap algorithm gets to a level that bounds the resolution of the 

foveal adaptation image between the current and next mipmap level a separate pass is 

performed to create the foveal image.  This is shown in Figure 5.5.  Only a part of the 

P-Buffer at the resolution of the foveal image is rendered.  Then the result is read back 

into processor memory using glReadPixels( ).  This is typically a slow operation but 

the foveal image is very low resolution so the overhead is minimal. 

 

5.5 Color Sensitivity 

 

To simulate the loss of color vision at mesopic and scotopic adaptation levels 

Ward uses the same technique as Ferwerda [1996], interpolating between a scotopic 

monochromatic response function and a photopic chromatic response function.  In the 

mesopic range of adaptation levels, both rods and cones contribute to the appearance 

of the scene and a linear ramp between the scotopic and photopic responses is 

calculated.  The low  end  of  the  mesopic  range  where  cones are just getting enough  

 



 55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

u

r

[

 

t

 

 

 

 
    
Figure 5.6:  Example illustrating the formation of mipmaps using fragment
shaders and the P-Buffer going from a 4x4 texture to the next mipmap level (2x2).
Each frame shows how the texture is offset in relation to the P-Buffer before
sampling in the fragment shaders.  Each sample is then given a weight and
combined with the others to get the final P-Buffer pixel which can then be read
back into texture memory to fill the next mipmap level.                
ight is 0.0056 cd  and below this only the monochromatic scotopic luminance is 

sed.  The high end of the mesopic range is approximately 5.7 , after which the 

ods are no longer effective and only the chromatic photopic response is used 

Ward1997].  

2/ m
2/ mcd

The scotopic luminace at each pixel is estimated by using an approximation to 

he least squares fit to the colors on the MacBeth ColorChecker Chart: 









−






 +
+⋅⋅= 68.1133.1cot X

ZYYYs          (Eq. 5.5) 



 56

where  =  the scotopic luminance and  =  photopic color, CIE 

observer.  If some other set of R,G,B primaries is used, we adopt Ward’s 

approximation based on R,G,B values.  However, because there is no standard for 

R,G,B primaries the approximation is less reliable.   

cotsY ZYX ,, o2  

 Color sensitivity calculations are included in the main fragment shader, which 

also includes the addition of glare to the original source image, local acuity blurring, 

and the final application of the tone reproduction curve.  Color sensitivity is done 

using a series of vector MUL (multiply) operations to get scotopic and photopic 

luminances and a LRP (linear interpolation) to get the final corrected color.  (See the 

Fragment Shader section, which gives the full fragment shader code.  The comments 

included in the code explain the necessary operations.)  

 

5.6 Histogram Adjustment 

 

 Histogram adjustment based on human contrast sensitivity creates a mapping 

for an HDR image that both compresses the image data into a displayable range and 

matches display contrast visibility with world observer visibility at threshold.  The 

method is based on histogram equalization.  However, normal histogram equalization 

expands contrast in all regions of an image while Ward’s work attempts to match 

world and display contrasts and thereby accurately reproduce visibility.  Histogram 

adjustment uses the framework of histogram equalization but adds a constraint based 

on human contrast sensitivity data that effectively compresses under-represented 

regions of the histogram without expanding over-represented ones.  This process 

simultaneously respects the contrast sensitivity limits of a human observer.  The result 

of the histogram adjustment is a global tone mapping function that is applied to the 

HDR image being processed.  The histogram adjustment step is sufficiently fast in 

 



 57

software so that no acceleration is needed.  Furthermore, the algorithm is too 

complicated to be accelerated using the operations available on graphics hardware.  

We therefore use Ward’s histogram adjustment algorithm unchanged and concentrate 

on speeding up the application of the final mapping function to the HDR image being 

processed. 

 Histogram adjustment begins with the creation of an approximate brightness 

histogram from the corrected foveal image.  The corrected foveal image has the 

veiling luminance correction added since this will affect the viewer’s adaptation state.  

Once formed a constraint on the histogram bin counts is enforced.  We first explain 

the constraint and then the application of the constraint to the histogram. 

Let,  “just noticeable difference” for adaptation level ,  which is 

the detection threshold for luminance contrasts at a given adaptation level 

[Ferwerda96],  =  world luminance ( in cd ) and  =  display luminance (in 

).  To ensure that contrasts on the displayed image are not more noticeable 

than in the real world, Ward constrains the slope of the global mapping to the ratio of 

the adaptation thresholds for the display and world: 

=∆ )( at LL

wL

aL

2/ m dL
2/ mcd

 

 
)(
)(

wt

dt

w

d

LL
LL

dL
dL

∆
∆

≤               (Eq. 5.6) 

 

Then, substituting in the derivative of the histogram equalization function and 

rearranging Ward’s equation yields a constraint on the bin counts: 

 

                              
ddd

w

wt

dt
w LLL

bLT
LL
LL

Bf
)]log()[log()(

)(
)(

minmax −
∆

⋅
∆
∆

≤         (Eq. 5.7) 

 

Where,    

                    =  world brightness ( in  ) wB 2/ mcd

 



 58

          T   =  the total number of adaptation samples 

     ∆   =  the bin step size in log( ) b 2/ mcd

          =  frequency count for the histogram bin at b)( ibf i 

 

Enforcing the constraint (Equation 5.7) takes the form of truncating bin counts 

that exceed the given ceiling.  However, this truncation changes T (the total number of 

adaptation samples) which in turn changes the constraint ceiling.  Thus, Ward iterates 

the truncation procedure and imposes a tolerance criterion, which says: stop when 

fewer than 2.5% of the original samples exceed the ceiling. 

 Once histogram adjustment is complete the final mapping of the input image is 

completed. This is accomplished using the fragment shaders available in the OpenGL 

1.4 specification discussed in Chapter 4 and, most importantly, the dependent texture 

read operation.  The form of the mapping is the same as for histogram equalization: 

 

                        )()]log()[log()log( minmaxmin wdddde BPLLLB ⋅−+=       (Eq. 5.8) 

Where, 

     =  computed display brightness, log(LdeB d). 

     =  the cumulative distribution function of world pixel brightness. )( wBP

 

The cumulative distribution function is computed in software and then stored as a one 

dimensional texture in hardware.  It is then sampled using a dependent texture read in 

the fragment shaders to accomplish the mapping.  However, before the output can be 

displayed the result must be converted to luminance and biased into 0.0-1.0 for 

display.  Conversion from brightness  to luminance requires a simple 

exponentiation.  Then the result is biased into 0.0-1.0 using: 

deB

   

 



 59

                              
minmax

min

dd

d
out LL

LLL
−

−
=              (Eq. 5.9) 

  

Next an appropriate exposure value must be chosen to set the actual range of the 

mapping, since it is not always appropriate that the maximum luminance map to the 

highest display value of 1.0.  For example, for low adaptation levels the highest value 

is significantly reduced.  To chose an appropriate value we use the same method as 

Ward [1994] and Ferwerda [1996].  A global scale factor is chosen assuming a single 

well defined adaptation level Lwa (in this case the average log scene luminances).  A 

scale factor is chosen such that a just noticeable different for a world observer at 

adaptation level Lwa is matched to a just noticeable difference at the midrange display 

value.  To fix the displayed range the maximum adaptation level of the foveal image is 

mapped to it’s corresponding display value using the scale factor.  If it is less than one, 

then the maximum displayed value is reduced, thereby setting an appropriate 

exposure.   

 Details of how the mapping is done in hardware are provided in the next 

section.  The discussion relates this section, the acuity section and color sensitivity 

section to the actual fragment shader code used. 

 

 

5.7 Fragment Shader 

 

Details on fragment shader syntax and parameters can be found in the OpenGL 

1.4 specification [OpenGLSpec]. The fragment shader begins by naming attributes and 

parameters for later use in the program.  These contain all relevant input data.  We 

first identify the fragment program beginning with:  

!!ARBfp1.0 

 



 60

This tells us that it is an ARB( OpenGL Architecture Review Board) fragment 

program version 1.0.  Next we name our attributes.  

 

 ATTRIB tex = fragment.texcoord[0]; 

 ATTRIB veil = fragment.texcoord[1]; 

 

‘tex’ is the texture coordinates of texture unit 0 and it references our input HDR 

texture which has been normalized into the range 0.0-1.0 by dividing the input by 

MAX_LUM (the maximum luminance in the scene).  The w component contains the 

texture mipmap level bias calculated in Equation 5.4 and shown in Figure 5.4. ‘veil’ is 

the veil correction image computed by our glare calculations and stored in the texture 

coordinates of texture unit one.  After attributes we name parameters. 

 

 PARAM misc = {0.4545454, 0.0, 0.0, 0.0};  

 PARAM photopic = program.local[0]; 

 PARAM scotopic = program.local[1]; 

  

‘misc’ stores micellaneous constants.  The only one we use is misc.x  which stores a 

gamma correction factor for use after the final mapping.  ‘photopic’  stores the 

conversion vector to convert RGB’s to photopic luminance and ‘scotopic’ stores the 

conversion vector to convert RGB’s to scotopic luminance. 

 

PARAM bmap = program.local[2]; 

 PARAM mapconst = program.local[3]; 

       PARAM whtefficacy = program.local[4]; 

 PARAM photopicw = program.local[5]; 

 



 61

 

‘bmap’ contains constants that map the output luminance into the final 0.0-1.0 display  

range as seen in Equation 5.9.  However, we divide the numerator into two terms so 

that the operation can be performed as a MAD (multiply add) in the fragment shader. 

‘mapconst’ contains constants to map texture input values into 0.0-1.0 before the final 

mapping (Equation 5.8) is applied via a dependent texture read.  It also contains two 

constants (the top and bottom of the mesopic range of vision) used in color appearance 

mapping for each pixel.  We discuss this later on in the code.  ‘whtefficacy’ holds the 

luminous efficacy for white light used in calculating luminance.  ‘photopicw’ has a 

premultiplied version of ‘photopic’ and ‘whtefficacy’.  The premultiplication is done 

to save fragment program operations. 

 

OUTPUT outColor = result.color; 

TEMP colin, bLookUp, Lscot, Lphot, cLookUp, Lphotw, newColin ; 

    

Finally, we name the output variable ‘outColor’ and initialize some constants for use 

in the program.  The use of each constant will become clear as we discuss the 

remainder of the fragment shader code. 

 

TXB colin, tex, texture[0], 2D;   

 

The first operation to perform is to sample the HDR texture and set the correct per 

pixel mipmap bias.  This can be done using the TXB operation which samples a 

texture using the t,u,v texture coordinates and sets the mipmap bias with the w 

component.  The result is stored in ‘colin’. 

 

 



 62

 MUL colin, colin, 0.913; 

 MAD colin, veil, 0.087, colin; 

 

 Next we composite  the veiling luminance calculation as illustrated in Figure 5.2. 

 

DP3 Lphotw, colin, photopicw;  

MAD_SAT cLookUp, Lphotw, mapconst.zzzz, mapconst.wwww;  

DP3 Lscot, colin, scotopic;  

LRP newColin, cLookUp, colin, Lscot;  

   

Once interpolated veiling luminance has been added to the input we must choose the 

color desaturation parameter.  For each pixel we map between the top and bottom of 

the mesopic range 0.0056 and 5.6 cd  based on the photopic luminance (Equation 

5.5).  Values above 5.6  map to 1.0 and those below 0.0056 cd  map to 

0.0.  In between we have a linear ramp from 0.0-1.0.  This is implemented first by 

finding the photopic luminance then mapping it over the prescribed range while 

clamping values above 1.0 and below 0.0.  The mapping constansts are divided by 

MAX_LUM to cancel out the normalization of the HDR input (Equation 5.10).   

2/ m
2/ mcd 2/ m

 

 

MesBottomMesTop
MesBottomL

cLookUp phot

−

−
=   where            (Eq. 5.10) 

 

LUMMAXmcdMesBottom _//0056.0 2=  

  LUMMAXmcdMesTop _//6.5 2=

 

 



 63

Once the desaturation parameter is set we calculate the scotopic luminance and 

linearly interpolate between it and the input color to get our new input color which is 

stored in ‘newColin’. 

 

DP3 Lphotw, newColin, photopicw;    

 

Then we calculate the photopic luminance with our new color in preparation for 

application of the global operator derived through the histogram adjustment.  

  

   LG2 bLookUp, Lphotw.x;                   // log2(L/MAX_LUM)   

   ADD bLookUp, bLookUp, mapconst.yyyy;     // add (BlMax - Bwmin) 

   MUL_SAT bLookUp, bLookUp, mapconst.xxxx; // multiply by 1/(Bwmax-Bwmin) 

 

To properly map the input luminances we apply Equation 5.4.  However, this requires 

having brightness values to index the cumulative distribution function.  In the 

fragment shaders we only have access to log base two instead of the natural logarithm 

used by Ward as a brightness approximation.  The two are related by a global constant 

which cancels out when brightness is normalized into 0.0-1.0 before sampling the 

cumulative distribution function.  The normalization proceeds in three steps.  First we 

take log2(L), which is actually log2( Lactual/MAX_LUM).  Then we normalize with a 

multiply and add.  The MAX_LUM will drop out because our first ADD operation 

subtracts off the contribution from MAX_LUM to the logarithm of L. 

  

       // Pass two 

       TEMP weight,out, Pb, Bnew, Lnew, rcpLphot, Bnewmul; 

       TEX_SAT Pb, bLookUp, texture[2], 1D; 

 



 64

       MAD Bnew, Pb, bmap.xxxx, bmap.yyyy;";        // Equation 5.8 

        

With the normalized brightness calculated in pass one we now perform a dependent 

texture read which samples the cumulative distribution function for each pixel 

signaling the start of pass two.  This is stored in ‘Pb’.  Then we apply Equation 5.8 to 

get our display brightness values. 

 

EX2 Lnew, Bnew.x;                          // convert to Lnew 

       MAD_SAT Lnew, Lnew, bmap.zzzz, bmap.wwww;  // Bias into 0.0-1.0 

       RCP rcpLphot, rcpLphot.x;                  // compute 1/Lold 

 MUL Lnewmul, Lnew, rcpLphot.xxxx;          // compute Lnew*(1/Lold) 

 MUL Lnewmul, Lnewmul, scotopic.wwww;       // apply exposure 

 MUL out, newColin, Lnewmul; 

 

Before we can output the result we must first convert brightness to luminance by 

exponentiating and biasing the result into the displayable range of 0.0-1.0 using 

Equation 5.9.  Then, to apply the final mapping we divide out the original luminance 

value of each incoming pixel and replace it with the newly mapped luminance value.  

However, we first multiply by an appropriate exposure value (discussed in the 

Histogram Adjustment section). 

 POW outColor.x, out.x, misc.x; 

 POW outColor.y, out.y, misc.x; 

 POW outColor.z, out.z, misc.x; 

 END 

 

Finally, the output is gamma corrected and sent to be displayed. 

 



 

Chapter 6 
 

Adaptation Time Course 
 

 The advantages of a real time operator become clear when we start to process 

image streams.  As described in Chapter 3, adaptation does not happen 

instantaneously. Thus, to provide the correct visual appearance when processing 

image streams we must calculate the effects of light and dark adaptation. 

 

6.1 Dark Adaptation 

 

We first consider dark adaptation within the context of the histogram 

adjustment algorithm.  Figure 6.1 shows the time course of dark adaptation measured 

by Hect [1934] and borrowed from Ferwerda [1996].  Our time course model closely 

follows this published data to ensure perceptual validity.  In the graph shown an 

observer was first adapted to a high background level of illumination and then put into 

total darkness.  The plot gives us the detection threshold as a function of time in the 

dark.  It is the combination of two curves, one for the cones and  one for the rods.  The 

envelope of the two curves determines the dominant detection threshold.  Although 

only one set of curves is shown in Figure 6.1  there are a family of curves, one for 

each potential starting adaptation level.  It is commonly assumed that each curve can 

be approximated by a shift of a single curve in time.  That is, if the experiment starts 

the observer at a lower adaptation level, the effective starting threshold is simply at a 

point lower  on a  curve where  the  observer  started   at a higher  adaptation level.    

 

 

 65



 66

We also adopt this assumption which is vital to our new time course algorithm which 

depends on the existence of a single  invertible time course function. 

Since our dark adaptation model is in the context of  a visibility matching tone 

reproduction operator it should influence how JND’s in the scene are mapped to 

JND’s on the display.  Let us first consider how this might be accomplished given a 

single adaptation level.  Assuming an observer starts at adaptation level  Lwa1, this 

corresponds to a specific dark adaptation curve.  Since all curves can be found from a 

curve that maps a very high adaptation level to a very low level, we can find a point 

along this single curve that is our starting threshold  )( 1wat LL∆ .  This is the current 

just noticeable difference at world adaptation level Lwa1.   It can be straight forwardly 

found by using the contrast sensitivity curves in Figure 6.2 which gives us detection 

threshold as a function of background illumination level.  For background information  

  

 

 

 

 

 

 

 

 

 

 

 

  

    
 
Figure 6.1: The time course of dark adaptation from Ferwerda [1996]. 

 

 



 67

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and re

suppos

adapta

dark a

JND’s

correc

video 

corresp

(t LL∆

 

    

 
 
Figure 6.2: A model of detection thresholds of the range of adaptation 
levels. 
view of the experiments used to gather this data see Ferwerda [1996].  Now, 

e that we jump to adaptation level Lwa2  and it is lower than Lwa1.  This 

tion level will similarly place us at some detection threshold  on our 

daptation curve.  If the dark adaptation curve is invertible then each of these 

 will correspond to a given time in the dark adaptation process.  To track the 

t world JND over time we simply start at time t

)( 2wat LL∆

o (the time corresponding to 

 ) and move forward in time over each frame of our animation or HDR 

and look up the new JND at the new time.  This will continue until the time 

onding to L

)1wa

wa2 is reached or Lwa2 moves above the adaptation level associated 



 68

with the current JND.  During this process Lwa2 can change and its current state is 

always tracked.   

Relating the dark adaptation framework discussed for a single adaptation level 

to the histogram adjustment algorithm is fairly straight forward.  Recall that to ensure 

that contrasts on the displayed image are not more noticeable than in the real world, 

Ward constrains the slope of the global mapping function to the ratio of the adaptation 

thresholds for the display and world (Equation 6.1): 

 

 
)(
)(

wt

dt

w

d

LL
LL

dL
dL

∆
∆

≤               (Eq. 6.1) 

 

This is computed for each adaptation level in the scene, the number of which is the 

number of bins in the brightness histogram.  thus, to create the correct mapping 

function at any moment in time we apply our method for a single adaptation level to 

each level considered in the brightness histogram. The time course model controls the 

world JND in the denominator of Equation 6.1.  In this way we guarantee direct 

correspondence with the measured data of Figure 6.1 and correct use of JND’s for 

mapping from world luminances to display luminances.  In addition, because each 

luminance population considered is mapped differently we have an effective local 

adaptation model where different parts of a scene will behave based on the local 

luminance levels. 

 

6.2 Light Adaptation 

 

When we go from a dark adapted stated to a much higher adaptation level, 

such as going from a dark movie theater out into daylight, the world appears bright 

and almost painfully glaring.  However, over time sensitivity is restored and the light 

 



 69

no longer seems as intense.  This phenomenon is known as light adaptation and it can 

be described by the curves shown in Figure 6.3.  The plots show threshold luminance 

as a function of time for observers who have been adapted to the dark and then 

exposed to a large background field of illumination.  Light adaptation for rods is 

shown in Figure 6.3a.  The plot indicates that the rod system adapts very quickly to the 

new illumination level.  More than 80% of sensitivity is recovered in the first 2 

seconds [Ferwerda96].  Figure 6.3b shows light adaptation for the cone system in a 

similar experiment.  The data indicates that cones adapt much more slowly than do the 

rods.  A minimum threshold is reached after about three minutes of adaptation and a 

fully adapted state is reached after about 10 minutes.  The threshold rises from the 

minimum due to interactions between neural and photochemical processes in 

adaptation.  The cones dominate our visual experience for changes in illumination 

from scotoptic or mesopic to photopic jumps in adaptation level and from photopic to 

photopic jumps.  Light adaptation in the rods only becomes important for jumps from 

one scotopic to another scotopic level.  To proceed with our light adaptation operator 

we must have a single curve that gives us threshold over time because the histogram 

adjustment algorithm does not consider rods and cones separately.  We choose the 

cone light adaptation curve as our basis because it covers the more common and 

noticeable transitions one might encounter.  Light adaptation in the rods is modeled 

using the cone curves, which is not accurate with regards to the timing of adaptation 

but otherwise captures the characteristics of adaptation. 

 Light adaptation is modeled in the same framework as dark adaptation.  The 

world JND’s in the histogram adjustment constraint (Equation 6.1) are chosen using 

published data for light adaptation from Baker [1949].  As before, each luminance 

population of the histogram is treated separately, giving us local adaptation effects.  

The difference lies in how world JND’s are derived from the raw data in Baker [1949].   

 



 70

 

 

      
 
 
Figure 6.3a,b:  The top plot shows the time course of light
adaptation for rods and the bottom shows the time course for cones
[Ferwerda96].  The plots are time versus threshold luminance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 71

Unlike the dark adaptation case, we cannot use a single curve to approximate the 

behavior of adaptation over the range of vision.  The reason for this lies in the nature 

of the light adaptation data.  A given jump from a dark adapted state to a photopic 

state gives a significantly different light adaptation curve depending on the size of the 

jump.  Larger jumps, as shown in Figure 6.3b start at a higher threshold, drop farther 

in log units from the starting threshold and have a significant non-linear dip in the 

curve where the threshold drops below it’s final adapted state value.  Smaller jumps 

start at lower thresholds, drop progressively fewer log units from the initial threshold 

and have a more monotonic exponential character.  Despite these differences the time 

over which adaptation takes place is relatively constant for both small and large 

jumps.  A further issue, is that only data for jumps from a totally dark adapted state to 

a photopic state are available.  There is no data for intermediate jumps starting at a 

partially dark adapted state.  We attempt to accommodate these issues in our model.   

 To address the problem of curve variability we model each adaptation curve as 

an  exponential.  This will model the effects of light adaptation without the use of 

large amounts of stored data.  Using an exponential model also has the advantage of 

simplifying adaptation curve construction for a given jump in adaptation level.  The 

only information needed for each jump in adaptation level is the starting threshold and 

the ending adapted threshold.  Then, since the time constant for light adaptation is 

approximately invariant with respect to level changes we can specify an exponential 

curve.  Finding the instantaneous threshold consists of looking at the appropriate curve 

for a given change in adaptation level and extracting the threshold immediately after 

the change.  Two issues arise in attempting to chose the starting threshold.  First, we 

do not have data for the threshold at time zero.  Second, Baker [1949] only measured 

curves for four jumps in adaptation level.  With the initial threshold set the final 

threshold can be found straight-forwardly by using the contrast sensitivity curves in 

 



 72

Figure 6.2 which gives us detection threshold as a function of background illumination 

level. 

 To account for the lack of data for the first few seconds after the change in 

adaptation level in Baker’s [1949] data, we can chose a starting threshold by fitting an 

exponential curve to the measured data and then extrapolate back toward time zero to 

within a few frame times to estimate the initial threshold.  Moving a few frame times 

away from time zero is a reasonable point to chose a starting threshold because the 

model begins operating a few frames after a jump in adaptation level.  Finally, to 

overcome the disadvantage of having only a few measured light adaptation curves 

from Baker [1949], we construct a curve from Baker’s data that gives an initial light 

adaptation threshold for a given jump in adaptation level by fitting to the four values 

available.  Once this curve is set, we can use it to find an estimate of how much above 

the adapted threshold we should be for a given jump in adaptation level.  In the 

absence of data for intermediate changes in adaptation level (like from one photopic 

level to another) we simply use this curve, which is based on changes from a fully 

dark adapted state to a photopic state, to approximate the intermediate changes.  The 

result is a light adaptation model based on JND’s and tied closely to published data on 

light adaptation. 

 

 

 

 

 

 

 

 

 



 

Chapter 7 
 

Results 
 

 This chapter presents the results of applying our new real-time tone 

reproduction operator and is organized into five main sections.  First we discuss 

results which test the performance of our operator over the absolute range of vision.  

To provide a comparison with previous work that addresses this issue, namely 

[Ferwerda96], we use the same scene which contains a Snellen acuity chart and 

Macbeth Colorchecker chart and we simulate the same illumination levels (Figure 

7.1).  These include daylight (1000 cd/m2),dim interior lighting (10 cd/m2), moonlight 

(0.04 cd/m2) and starlight(0.001 cd/m2) illumination levels.  A second test, which uses 

the Ward [1997] bathroom scene at interior and moonlight levels is compared to the 

original Ward [1997] histogram adjustment operator (Figure 7.2).  The results 

illustrate that although our operator uses graphics hardware and therefore 

approximates some of the functions used in Ward’s operator, it is still predictive and 

matches the original Ward operator for static scenes.  Color coded difference images 

between our operator and Ward’s are provided and discussed (Figure 7.2).  The third 

section presents a number of test cases designed specifically to show the compression 

of high dynamic range input and to verify that the operator does yield quality results 

and real-time performance over a range of image resolutions and fields of view.  We 

process the office scene from Ward [1997], the desk and parking garage scenes from 

Pattanaik [1998] and the Stanford Memorial Church HDR image [Debevec97].  These 

results are shown in Figure 7.3.   The fourth section shows image sequences that 

simulate the course of light and dark adaptation to demonstrate the time dependent 

properties   of   our   operator.    For   dark   adaptation   we  use  the   Ward [1997]  

 73



 74

bathroom scene and jump from a daylight adaptation level down to a starlight level 

(Figure 7.4).  To illustrate light adaptation we again use the bathroom scene and jump 

from a moonlight adaptation level to an interior level (Figure 7.5).  In these two cases 

the adaptation level changes via a global multiplier.  The scene itself is not dynamic.  

A further case illustrates light adaptation for dynamic scene illumination.  It shows a 

sequence in which car headlights pointed at the viewer are turned on  (sequence 

courtesy of Markus Strobel at IMS Chips [IMS03]).  In the fifth section we 

demonstrate that by modifying the psychophysical data on which our operator is 

based, we can simulate the differences in appearance of high dynamic range scenes to 

normal and low vision observers.  Figure 7.6 shows frames from the bathroom scene 

for a dark adaptation sequence for a normal viewer of age 25 years and an older 

viewer of age 75 years.  In Figure 7.7 an HDR sequence of  a driver entering and 

exiting a tunnel is also shown.  This is the same tunnel used in Pattanaik’s [2000] 

work on time-dependent tone reproduction.  The dark adaptation time course, contrast 

sensitivity and glare models are altered to account for related changes in vision.   

 

7.1 Simulating Wide Absolute Changes in Illumination 

 

 The images in Figure 7.1 illustrate the performance of our operator over the 

absolute range of human vision.  The Snellen and Macbeth image has a resolution of  

1000 by 700 pixels and a field of view of 40 degrees horizontally and 28 degrees 

vertically.  Once loaded into our operator this image can be processed at a rate of 68.8 

fps (frames per second) and we can switch from one adaptation level to another 

instantly without change in update performance.  Panel (a) of Figure 7.1 shows the 

output of our operator with the adaptation level set to daylight levels of illumination  

 

 



 75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      
 
Figure 7.1:  Visual function simulated over a
large absolute range of vision. 



 76

(1000 cd/m2).  In terms of our operator this means that the average luminance in the 

scene is set to this value and the original scene is scaled appropriately to match it.  The 

image simulates the appearance of photopic light levels and, as expected, the colors of 

the Macbeth chart are fully saturated and all letters in the Snellen chart can be 

recognized.  There is no reduction in scene contrasts due to the limits of human 

contrast sensitivity.  Another important feature to notice is the reduction in contrast 

around the Snellen chart and in the letters of the Snellen chart due to the effects of 

glare.  Panel (b) shows the scene at dim interior conditions (10 cd/m2).  In this case we 

are approaching the top of the mesopic range.  The scene is overall a bit darker, some 

contrast sensitivity has been lost, and colors are less saturated.  In comparison with 

Ferwerda’s [1996] results our operator predicts a scene that is not as dark overall.  

This could be due to how the adaptation level is set or due to the added benefit of the 

histogram adjustment algorithm that takes local luminance populations into account.  

Panel (c) shows the scene at a moonlight like adaptation level ( 0.04 cd/m2).  Overall 

the scene has become darker and visual acuity has been reduced.  An important quality 

to notice is that the acuity in darker regions of the scene is worse than in brighter 

regions.  Thus, an observer can still discern most if not all the letters of the Snellen 

acuity chart because it’s luminance is much higher than the average for the scene.  

This highlights the local acuity blurring that our operator computes in contrast to the 

global blurring function based on a single adaptation level used by Ferwerda’s [1996] 

operator.  Another important quality of the scene is that the saturation of colors in the 

Macbeth chart have been greatly reduced.  Shorter wavelength colors like blue and 

green have become completely achromatic while longer wavelength colors are still 

slightly saturated.  Panel (d) shows the scene at a starlight adaptation level (0.001 

cd/m2).  At this level of illumination vision is achromatic, only the largest contrasts are 

visible, and acuity is very poor except in the brightest areas of the scene.  Panels (a)-

 



 77

(d) highlight both the ability of our operator to  map scenes quickly and to simulate 

visual appearance over the range of vision.  

 

7.2 Comparison With Ward’s Histogram Adjustment Operator 

 

Figure 7.2 shows a side by side comparison of our real-time operator and 

Ward’s histogram adjustment operator for the Ward bathroom scene at a dim interior 

adaptation level (10 cd/m2) (Figure 7.2a) and a moonlight adaptation level (0.04 

cd/m2) (Figure 7.2b).  The dynamic range of this scene spans six log units, the field of 

view is 50 degrees horizontally by 74 degrees vertically and the image resolution is 

346 by 512.  Our operator can process this image at 15 fps.  A typical running time for 

Ward’s software based histogram adjustment algorithm would be about 1 second.   

The frame rate for the bathroom scene is much less than in the case of the Snellen and 

Macbeth image even though the image resolution here is much smaller.  An 

explanation for this performance difference is given in Section 3 of this chapter.  Color 

coded difference images of our results and Ward’s illustrate the magnitude and 

location of differences [on an 8-bit 0-255 scale (Figure 7.2)] which are introduced by 

the approximations in our hardware-based algorithm.  The most significant errors are 

at the limits of maximum and minimum luminance.  This is due to the limited 

precision of computations in the fragment shaders and glare kernel approximations.  

At far right in Figure 7.2 are the actual difference images, which show that the errors 

are hardly visible and not noticeable in our results.  We found that our operator 

performs with similar error characteristics for other images tested. 

 

 

 

 



 78

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.2:  Ward Bathroom scene at (a) dim interior and (b) moonlight
conditions compared with Ward’s [1997] tone reproduction operator which is the
basis for our real-time operator.  Color coded difference images between our
results and Ward’s illustrate the magnitude and location of error.  Most of the
significant error is at the limits of high and low luminance, due to the limited
precision of computations in the fragment shaders and glare kernel
approximations.  At far right are the actual difference images, which are hardly
visible and not noticeable in the results. 

 
 
 
 
 

 



 79

7.3 High Dynamic Range and Operator Performance 

 

 Figure 7.3 illustrates the application of our operator to scenes with varying 

image resolution, field of view and dynamic range.  Frame (a) and (c) are the desk and 

parking garage scenes from Pattanaik [1998].  Both images are 1536 by 1024, have a 

field of view of 37 by 25 degrees and an original dynamic range of roughly 10,000:1.  

They can be computed at 42.5 fps.  The desk scene highlights the importance of glare 

to the proper appearance of brightness in a scene.  Frame (b) is the office scene from 

Ward [1997], which is 1000 by 676, has a field of view of 63 by 45 degrees and 

originally spans a dynamic range of 1000:1.  Our operator can process this image at 22 

fps.  Frame (d) is the Stanford Memorial Church, which is 512 by 768, has a field of 

view of 100 by 150 degrees and has an unmapped dynamic range of 250,000:1.  It 

runs at less than one fps.   

 

7.3.1 Performance 

 

As previously mentioned, when we compared the software based Ward 

histogram adjustment operator to our real-time hardware based operator in Section 2, 

images with larger resolution are not slower to process than smaller images.  The 

limiting factor is the size of the field of view.  The reason for this is that large fields of 

view, as with the Stanford Memorial Church and Ward Bathroom scene lead to larger 

foveal images.  This slows the histogram adjustment step, which must create a 

histogram from more samples.  More significantly however, it slows the glare 

computation which is done in software and involves an expensive convolution 

operation.  This fact explains why the Memorial Church runs very slowly.  In  

 

 



 80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

                     
 
Figure 7.3:  The application of our operator to scenes with varying resolution, field
of view and dynamic range.  (a) and (c) are the desk and parking garage scenes from
Pattanaik [1998].  Both images are 1536 by 1024, have a field of view of 37 by 25
degrees and an original dynamic range of roughly 10,000:1.  (b) is the office scene
from Ward [1997], which is 1000 by 676, has a field of view of 63 by 45 degrees
and originally spans a range of 1000:1.  (d) is the Stanford Memorial Church
(courtesy of Paul Debevec), which is 512 by 768, has a field of view of 100 by 150
degrees and has an unmapped dynamic range of 250,000:1. 



 81

subsequent tests we approximated the Church field of view with a 1/3 smaller field of 

view and the results are nearly indistinguishable and can be computed on the order of 

6-7 fps.  The convolution speed is the main limiting factor for the performance of our 

algorithm.  For applications where liberty can be taken with the accuracy of glare and 

visibility computations very high frame rates (60-90fps) can be acheived by 

downsizing the foveal image and using a small glare kernel.   

 

7.4 Light and Dark Adaptation 

 

Figure 7.4 shows an image sequence captured from our real time operator that 

shows a simulation of the time course of dark adaptation.  In the first frame the 

average luminance has been set to 1000 cd/m2, which approximates daylight levels of 

illumination.  In the second frame we have jumped instantaneously to a starlight 

adaptation level of 0.001 cd/m2.  Initially, only the largest luminance contrasts are 

visible because the threshold predicted by the dark adaptation curve (Figure 6.1) is 

very high compared to the final adapted state.  As time progresses, the threshold for 

visible contrasts gets smaller along the dark adaptation curve and progressively 

smaller contrasts become visible.  Because our time course model treats each 

adaptation level in the image separately we can simulate the effects of local dark 

adaptation.  This is clear from the differing rates of progress for adaptation throughout 

the image.  After 20 minutes very little change in adaptation can be observed and we 

have reached our steady state conditions for an adaptation level of 0.001 cd/m2, well 

into the scotopic range of vision and close to the limits of vision for lower contrasts in 

the scene. 

 Figure 7.5 shows an image sequence captured from our operator that simulates 

the time course of light adaptation.  In the first frame the average luminance has been  

 



 82

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.4:  Image sequence showing the time course of dark adaptation starting
at a daylight adaptation level (average luminance) of 1000 cd/m2and jumping
down to a starlight adaptation level of 0.001 cd/m2.  We follow the progress of
adaptation out to 20 minutes, well into the rod dominated scotopic range of
adaptation. The data used is from Riggs [1971]. 

 

 

 

 



 83

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.5:  Image sequence showing the time course of light adaptation starting
at a moonlight adaptation level of 0.04 cd/m2 and jumping to an interior light level
of 10 cd/m2. 

 

 

 

 



 84

 

set to 0.04 cd/m2  which approximates moonlight conditions.  In the second frame we 

have switched to 10 cd/m2 which approximates dim interior conditions.  At first the 

scene is washed out and excessively bright due to glare and maladaptation.  

Subsequent frames show the return of sensitivity until the final frame at 75 seconds at 

which point normal sensitivity has returned.  Figure 7.6 illustrates light adaptation in a 

HDR video sequence.  Initially, the headlight is turned off and the scene is at bright 

interior conditions.  When the light is turned on these images show the effects of 

significant glare and temporary reduction in contrast as light adaptation occurs.  

Sensitivity quickly returns over tens of seconds.  Our operator ran at 46.6 fps for this 

sequence.  The results of using JND’s to drive light adaptation lead to less of an 

extreme effect than predicted by Pattanaik [2000].  Pattanaik’s work predicts total 

wash out of the scene during light adaptation compromising visibility over most of the 

image.  Our operator predicts much less loss of visibility. The visual effect is closer to 

the work of Ferwerda [1996] but with variation for each separately considered 

luminance population in the brightness histogram. 

   

 



 85

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             
 
Figure 7.6:  Captured frames from a HDR sequence in which a
headlight is turned on facing the viewer.  The scene starts at
normal interior conditions in frame one.  Then the headlight is
turned on and light adaptation ensues.  Notice the initial lose of
sensitivity when the headlight comes on and then subsequent
return of sensitivity as light adaptation occurs.



 86

7.5 Normal Versus Aged Observers  

 

Figure 7.7 and 7.8 illustrates the application of our operator to low vision 

simulation, specifically, the images simulate some of the deficits to vision that occur 

with aging.  To create these simulations we have substituted psychophysical data on 

visual performance from an elderly population for normal data from young observers. 

We must change the contrast sensitivity curve, dark adaptation time course and 

contribution from glare.  Nothing else in our operator needs to be modified.    

Compared to a person with normal vision an older person (we chose 75 years) will 

have a detection thresholds shifted up by a factor of 3.51 [McGwin99].  The glare 

contribution factor K in Figure 5.1 will be increased by a factor of 2.8.  Finally, the 

dark adaptation curve will be different.  For an older person the threshold in the initial 

stages of adaptation is higher, the time until adaptation finishes is longer and the final 

threshold is higher.  We used data from McGwin [1999] for a 25 year old and 75 year 

old subject.  

  Figure 7.7 shows a jump from a daylight adaptation level of 1000 cd/m2 to a 

starlight adaptation level of 0.001 cd/m2 in the Ward bathroom scene for a 25 and 75 

year old individual .  Notice that the older individual has slightly less sensitivity to 

start with and recovers much more slowly than the younger individual.  Also, the older 

individual reaches a final steady state with less sensitivity.  In addition to these 

limitations glare is also significantly worse for the older person.  Figure 7.8 shows 

frames selected from an HDR video sequence of a 25 year old and 75 year old 

entering and exiting a tunnel.  The tunnel sequence is from Pattanaik’s [2000]  paper 

on time dependent tone reproduction. The scene has a dynamic range of approximately 

1000:1.  The top row simulates the appearance for a 25 year old and the bottom 

represents appearance for a 75 year old.  The older person suffers from more severe  

 



 87

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.7:  Comparison of dark adaptation in a 25 and 75 year old subject using the 
dark adaptation data of  [McGwin99].  The jump is from a daylight adaptation level 
(average luminance of 1000 cd/m2)  to a starlight adaptation level of 0.001 cd/m2.  
Notice that the older individual has slightly less sensitivity to start with and recovers 
much more slowly than the younger individual.  Also, the older individual reaches a 
steady state with less sensitivity.  In addition to these limitations glare is also 
significantly worse for the older person. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 88

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       
                         



 89

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.8: Frames selected from an HDR video sequence of a 25 year old and 75
year old entering and exiting a tunnel.  The tunnel sequence is from Pattanaik’s
[2000]  time dependent adaptation paper and has a dynamic range of 1000:1.  The
top row is for a 25 year old and the bottom is for a 75 year old.  The older person
suffers from more severe visibility problems entering and exiting the tunnel and 
recovers sensitivity more slowly than the younger person once inside the tunnel.
This is highlighted in frames 3,4 and 7,8.   

 

 

 

 



 90

veiling luminance throughout the sequence, which compromises visibility significantly 

when entering and exiting the tunnel.   In addition, dark adaptation is slowed and there 

is a higher threshold at the start of dark adaptation for the 75 year old.  Thus when 

entering the tunnel, visibility is reduced and sensitivity recovers more slowly than for 

the 25 year old.  However, once adaptation has completed, as shown in frame five, 

visibility is about the same because the luminance level inside the tunnel is not low 

enough to bring out the differences in the contrast sensitivity curve of the 75 and 25 

year old observers. 

 The tunnel sequence shown in Figure 7.7 is the most general case for our 

operator.  It is not just a shift up or down in absolute luminance (as in Figure 7.4,7.5 

and 7.7) or a static scene with dynamic pixel intensities (as in Figure 7.6), it is a fully 

dynamic scene.  As such it brings out some of the limitations of our approach.  

Because we base our operator on Ward’s histogram adjustment operator, and since it 

is intended to preserve visibility and not brightness, surfaces in HDR videos may not 

always remain the same brightness from frame to frame.  This occurs in the tunnel 

sequence just before entering the tunnel and is a property of the histogram adjustment 

algorithm.  Only with a general sequence does this become noticeable.  Moreover, our 

light adaptation approach based on JND’s and derived from psychophysical data is 

sensitive to outliers in the data.  If from one frame to the next a high valued patch 

emerges, the appearance will change dramatically because the entire mapping curve 

for the image is affected.  The approach is very well suited to absolute changes in 

adaptation level in which the dynamic range stays constant, but falters with noisy data 

and oscillating changes in dynamic range.  Too much sensitivity to luminance changes 

is the price paid for using a single global operator rather than a local operator in light 

adaptation. 

 

 



 

Chapter 8 
 

Conclusion and Future Work 
 

 In this thesis we have implemented a real-time hardware accelerated tone 

reproduction operator that increases current performance by one or two orders of 

magnitude, includes more phenomena than past work and is widely applicable.   We 

applied our operator to a wide range of test images and sequences and observed 

quality results and good performance.  Our operator depends on commodity graphics 

hardware and uses some approximations for its speed, yet it remains predictive.  The 

use of hardware based fragment shaders for image processing proved valuable for 

performance and highlighted the growing usefulness of graphics hardware for 

applications beyond standard hardware accelerated computer graphics.   

 We introduced a new approach to light and dark adaptation that leads to an 

altered version of Ward’s histogram adjustment algorithm that is time varying and 

uses psychophysical detection threshold data directly.  Using the core operator and our 

time course model we successfully applied our operator to the simulation of vision for 

aged individuals and processed high dynamic range images and videos comparing a 

young and old viewer. 

 Our operator focused on visibility as the most important measure of 

correctness.  Due to this, perception of brightness, colorfulness and apparent contrast 

and other supra-threshold phenomena were not considered.  Sometimes, with dynamic 

scenes, the apparent brightness of surfaces in the scene would change, leading to a 

time varying surface brightness.  These problems are heightened if input data is noisy 

and has outliers.  In addition our time course models will not always reproduce the 

subjective appearance of light or dark adaptation  correctly.   For instance, during light  

 91



 92

adaptation, contrast may be reduced to preserve visibility at the cost of dimming the 

scene when it should appear overly bright.  Future work should definitely consider 

threshold and supra-threshold measures.  

 Finally, it is clear that there is more potential for tone mapping to gain wide 

usability and good performance from the capabilities of graphics hardware.  The more 

general the fragment programs become the more algorithms can benefit from using 

them.  Local algorithms have been shown to give better results than global ones.  A 

real-time local, predictive tone reproduction operator that takes into account threshold 

and supra-threshold measures does not yet exist and remains as a major challenge for 

future researchers in computer graphics. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX A 

 

 

Appendix A1 

 

 Below is code illustrating the formation of a floating point texture in 

OpenGL.  To set the texture using an array of floats the input type is set to 

GL_FLOAT ( see the OpenGL programming manual for more information ) and the 

format is set to GL_RGB16 or GL_RGBA16 , which provides 16-bits of precision per 

channel. 

 

void glTexImage2D(GLenum target, 

                  GLint level, 

                  GLint components, 

                  GLsizei width, 

                  GLsizei height, 

                  GLint border, 

                  GLenum format, 

                  GLenum type, 

                  const GLvoid *pixels) 

 

Example: 

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16, tex_x_res, 

tex_y_res, 0, GL_RGB, GL_FLOAT, hdrImageData); 

 

 

 93



 94

Appendix A2 

 

Below is OpenGL code for creating a P-Buffer (Pixel Buffer).  To create a P-

Buffer in Windows, the current device context (a reference to the graphics hardware 

being used) must be retrieved along with the current OpenGL rendering context.  

Next, parameters for the P-Buffer such as the number of channels, bit depth of each 

channel, and modes of operation are selected.  This is done by specifying the desired 

parameters and then querying the current device context to see if what you want is 

available.  If the P-Buffer format desired exists a new P-Buffer will be created.  Then 

a device context is retrieved for the new P-Buffer and a new rendering context is 

created based on the device context.  Once this has been done all OpenGL calls will 

apply to either the standard or the P-Buffer rendering context depending on which is 

selected at the time.  Switching between rendering contexts is done using the 

wglMakeCurrent function.  Textures can be shared between contexts using the 

wglShareLists function. 

 

HDC hpbufdc; 

HGLRC hpbufglrc; 

HGLRC hwinglrc; 

HDC hdc; 

HPBUFFERARB hbuf; 

// Get current device context 

hdc = wglGetCurrentDC();  

// Get current OpenGL rendering context 

hwinglrc = wglGetCurrentContext();     

// Check pixel formats 

  



 95

float fAttributes[] = {0,0}; 

int pixelFormat = 1000; 

UINT numFormats; 

int iAttributes[] = {WGL_SUPPORT_OPENGL_ARB, TRUE, 

           WGL_DRAW_TO_PBUFFER_ARB, TRUE, 

                WGL_BIND_TO_TEXTURE_RGB_ARB, TRUE, 

      WGL_COLOR_BITS_EXT,48, 

      WGL_RED_BITS_EXT, 16, 

                     WGL_GREEN_BITS_EXT,16, 

                     WGL_BLUE_BITS_EXT,16, 

                     WGL_ACCELERATION_ARB, 

                     WGL_FULL_ACCELERATION_ARB,0,0}; 

        

bool status = wglChoosePixelFormatARB(hdc, iAttributes, fAttributes, 

1, &pixelFormat, &numFormats);     

cout << "Found a matching pixel format?(0 or 1): " << status << endl; 

cout << "And numFormats is not zero: " << numFormats << endl; 

cout << "Pixel Format ID: " << pixelFormat << endl; 

 

 

// Create the pbuffer 

int itAttrib[]={WGL_TEXTURE_FORMAT_ARB, WGL_TEXTURE_RGB_ARB,  

           WGL_TEXTURE_TARGET_ARB,WGL_TEXTURE_2D_ARB,0,0}; 

hbuf = wglCreatePbufferARB( hdc, pixelFormat, 512, 512, itAttrib );  

// get PBuffer device context 

hpbufdc = wglGetPbufferDCARB( hbuf );  

  



 96

// Get new rendering context 

hpbufglrc = wglCreateContext( hpbufdc ); 

wglShareLists(hwinglrc, hpbufglrc ); 

int w,h; 

wglQueryPbufferARB( hbuf, WGL_PBUFFER_WIDTH_ARB, &w ); 

wglQueryPbufferARB( hbuf, WGL_PBUFFER_WIDTH_ARB, &h ); 

cout << "The PBuffer Size I got is: " << w << " " << h << endl; 

if( !wglMakeCurrent( hpbufdc, hpbufglrc ) ) { 

 cout << "wglMakeCurrent:Failed" << endl;  

} 

 

Appendix A3 

 

 Below is OpenGL code for creating a texture with automatic hardware 

mipmap generation enabled.  Further details can be found under ‘Automatic Mipmap 

Generation’ in the OpenGL 1.4 Specification.  It has been promoted from the 

GL_SGIS_generate_mipmap extension which is used in the code below so that  all 

one needs to do now is set the texture parameter GENERATE_MIPMAP  to TRUE.  

First a texture object is created and bound as the current texture.  Next standard 

magnification and minification filters, and texture wrap parameters are set for the 

texture.  Then, assuming that we are using the GL_SGIS_generate_mipmap extension, 

we first request GL_NICEST as a hint (suggestion) to the card to make the highest 

quality mipmaps possible.  Then we set the base level, an integer identifier that refers 

to the bottom level of the mipmap and the maximum level which gives the final level 

to be calculated during mipmap formation.  Finally,  the texture parameter 

GL_GENERATE_MIPMAP_SGIS is set to TRUE and the texture is formed. 

  



 97

 

glGenTextures(1, &TexName); 

glBindTexture(GL_TEXTURE_2D, TexName); 

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,  

GL_LINEAR_MIPMAP_LINEAR);  

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,  

GL_LINEAR_MIPMAP_LINEAR);  

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); 

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); 

// Automatic Hardware Mipmap getneration 

glHint(GL_GENERATE_MIPMAP_HINT_SGIS, GL_NICEST);        

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL_SGIS, 0);  

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL_SGIS, 6); 

glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP_SGIS, TRUE);  

// Load HDR texture data 

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16, TEX_MAX_RES, TEX_MAX_RES, 0, 

GL_RGB, GL_FLOAT, hdrImage); 

 

 

Appendix A4 

 

Below is a sample fragment shader program which showcases the two pass 

capability of current fragment shaders.  The second pass begins with more texture 

sampling operations.  This mechanism allows for a powerful dependent texture read in 

which the result of an earlier operation can be used to sample a texture.  This allows 

lookup of functions for any number of purposes.  Dependent texture reads have been 

  



 98

used for per pixel lighting effects and BRDF approximations [HWLighting].  It’s 

important to note that our work is outdated with respect to the use of fragment shaders.  

It is more desirable to use a higher level API like Cg which will compile higher level 

code into the kind of assembly seen in our example.  When this work was begun no 

such APIs were available. 

 

// Get a fragment program ID 

glGenProgramsARB(1, &shaderNameARB0); 

// Make the new fragment program id be the current fragment program 

glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, shaderNameARB0); 

// Set the program local variable 0 to rgba = (1.0,1.0,1.0,1) 

glProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, 0, 1.0,  

                             1.0, 1.0, 1.0 );  

// String to hold fragment program code 

int proglen = 12; 

char** p = new char*[proglen]; 

// Signifies the start of the program 

p[0] = "!!ARBfp1.0";   

// Pass one /////////////// 

// Name some of the incoming fragment attributes and constants 

p[1] =  "ATTRIB tex = fragment.texcoord[0];"; 

p[2] =  "ATTRIB fcol = fragment.color;";   

p[3] =  "PARAM ones = program.local[1];"; 

// Output from program goes here 

p[4] = "OUTPUT outColor = result.color;"; 

// Temporary variables for use in program 

  



 99

p[5] = "TEMP colin, bias;"; 

// use the texture coordinates to set the LOD bias  

// of the incoming texture 

p[6] = "MOV bias, tex;"; 

// sample texture from texture unit 0 and bias  

// the mipmap level of detail 

p[7] = "TXB colin, bias, texture[0], 2D;"; 

// Pass two //////////////// 

// Separation between passes is signified by dependent texture 

// or regular texture read 

p[8] = "TEMP lookup;"; 

// Use the input color to lookup into the texture 

// unit 1 texture. 

p[9] = "TEX lookup, colin, texture[1], 2D;";   

// Compute two to the power of the x component of the vector lookup  

p[10] = "EX2 outColor, lookup.x;"; 

// Signifies the end of the fragment program 

p[11] = "END"; 

char* string = new char[200]; 

for( int j=0; j <200; j++ ) string[j] = NULL; 

for( int i=0; i < proglen; i++ ) { 

 strcat(string, p[i]); 

} 

int len = strlen(string); 

glProgramStringARB(GL_FRAGMENT_PROGRAM_ARB, 

GL_PROGRAM_FORMAT_ASCII_ARB, len, string); 

  



 100

 

After setting up the fragment program it can be used by making the following calls in 

the OpenGL display loop: 

 

glEnable(GL_FRAGMENT_PROGRAM_ARB); 

glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, shaderNameARB0); 

……rendering code…… 

glEnable(GL_FRAGMENT_PROGRAM_ARB); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

Bibliography 

 

[Adams80] A. Adams. The camera. The Ansel Adams Photography Series. Little, 

Brown and Company, 1980. 

[Adams81] A. Adams. The negative. The Ansel Adams Photography Series. Little, 

Brown and Company, 1981. 

[Adams83] A. Adams. The print. The Ansel Adams Photography Series. Little, Brown 

and Company, 1983. 

[Ashikmin02] M. Ashikhmin. A tone mapping algorithm for high contrast images. In 

13th Eurographics Workshop on Rendering. Eurographics, June 2002. 

 

[ATI] http://www.ati.com, 2003. 

 

[Bolz03] J. Bolz, I. Farmer, E, Grinspun, P. Schröder. Sparse Matrix Solvers on the 

GPU: Conjugate Gradients and Multigrid. The Proceedings of SIGGRAPH, 2003.   

[Blommaert90] F.J.J. Blommaert, and J.-B. Mertens. An object-oriented model for 

brightness perception. Spatial Vision 5, 1, pages 15-41, 1990.. 

[Bruce96] V. Bruce. The role of the face in communication: Implication for 

videophone design. Interacting with computers, 8, pages 166-176. 1996. 

 

[Chiu93] K. Chiu, M. Herf, P. Shirley, S. Swamy, C. Wang, and K. Zimmerman. 

Spatially nonuniform scaling functions for high contrast images. In Graphics Interface  

 101 
 



 102

’93, pages 245–253, Toronto, Ontario, Canada, May 1993. Canadian Information 

Processing Society. 

 

[Cohen02]  J. Cohen, C. Tchou, T. Hawkins, and P. Debevec. Real-Time  high 

dynamic range texture mapping. In 12th Eurographics Workshop on Rendering,     

pages 313–320. Eurographics, June 2002. 

[Debevec97] P. E. Debevec, and J. Malik. Recovering high dynamic range radiance 

maps from photographs. In SIGGRAPH 97 Conference Proceedings, Addison Wesley, 

T. Whitted, Ed., Annual Conference Series, ACM SIGGRAPH, pages369-378, 1997. 

[Devlin02] K. Devlin. A review of tone reproduction techniques. Technical Report 

CSTR-02-005, Department of Computer Science, University of Bristol, November 

2002. 

[Dicarlo00] J. DiCarlo and B. Wandell. Rendering high dynamic range images. 

Proceedings of the SPIE: Image Sensors 3965, pages 392-401, 2000. 

 

[Durand02] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high 

dynamic range image. In John Hughes, editor, SIGGRAPH 2002 Conference Graphics 

Proceedings, Annual Conference Series, pages 257–265. ACM Press/ACM 

SIGGRAPH, 2002. 

 

[Durand00] F. Durand and J. Dorsey. Interactive tone mapping. In Rendering 

Techniques 2000: 11th Eurographics Workshop on Rendering, pages 219–230. 

Eurographics, June 2000. 

 

  
 



 103

[Fairchild95] Fairchild and Reniff .  Time course of chromatic adaptation for color-

appearance judgments. JOSA A, 12(5):824, 1995. 

[Fattal02] R. Fattal, D. Lischinski, and M. Werman. Gradient domain high dynamic 

range compression. In Proceedings of ACM SIGGRAPH 2002, Computer Graphics 

Proceedings, Annual Conference Series. ACM Press / ACM SIGGRAPH, July 2002. 

[Ferwerda98] J.A. Ferwerda. Visual Models for Realistic Image Synthesis. PhD thesis, 

Program of Computer Graphics, Cornell University, Ithaca, 1998. 

[Ferwerda96] J.A. Ferwerda, S. Pattanaik, P. S. Shirley, and D. P. Greenberg. A model 

of visual adaptation for realistic image synthesis. In Proceedings of SIGGRAPH 96, 

Computer Graphics Proceedings, Annual Conference Series, pages 249–258, New 

Orleans, Louisiana, August 1996. ACM SIGGRAPH / AddisonWesley.  

 

[Geigel97] J. Geigel and K. Musgrave. A model for simulating the photographic 

development process on digital images. Proceedings of SIGGRAPH ’97, pages 135-

143, 1997. 

[Glassner95] A. Glassner. Principles of Digital Image Synthesis. Morgan Kaufman, 

San Francisco, 1995. 

[HLSL] http://msdn.microsoft.com/library/default.asp?url=/library/enus/dnhlsl/html/  

shaderx2_introductionto.asp, 2003. 

 

  
 



 104

[Holm00] J. Holm, K. Parlulski, and E. Edwards. Extended colour encoding 

requirements for photographic applications.  CIE Expert Symposium, Extended Range 

Color Spaces, November 11, 2000. 

[Hunt95] R.W.G. Hunt. The Reproduction of Colour, Chapter, Fountain Press, 

England, 1995. 

[Hunt52] R.W.G. Hunt. Light and dark adaptation and the perception of color. JOSA 

A, 42(3):190, 1952. 

[Hurvich81] L.M. Hurvich. Color Vision. Sinaur Associates Inc. Sunderland, 

Massachusetts, 1981. 

[Hurvich56] L. M. Hurvich and D. Jameson. Some quantitative Aspects of an 

Opponent-Colors Theory. IV. A Psychological Color Specification System. Journal of 

the Optical Society of America, Vol. 46, No. 6, June 1956, pp. 416-421. 

[HWLighting] http://developer.nvidia.com/object/docs_lighting_materials.html, 2003 

 

[IMS03] http://www.ims-chips.de, 2003 

[Jameson56] D. Jameson and L.M. Hurvich. Some Quantitative Aspects of an 

Opponent-Colors Theory. I. Chromatic Responses and Chromatic Saturation. Journal 

of the Optical Society of America, Vol. 45, No. 7, July 1955, pp. 546-552. 

[Jensen00] H.W Jensen, S. Premoze, P. Shirley, M.M. Stark, W.B. Thompson and J.A. 

Ferwerda. Night Rendering. Tech. Rep. UUCS-00-016, Computer Science 

Department, University of Utah, August 2000 

  
 



 105

[Jobson97] D.J. Jobson, Z. Rahman, and G.A. Woodell. A multiscale retinex for 

bridging the gap between color images and the human observation of scenes. IEEE 

Transactions on Image Processing, 6(7):965–976, July 1997. 

 

[Kruger03] J. Krüger, R. Westermann. Linear Algebra Operators for GPU 

Implementation of Numerical Algorithms. Proceedings of SIGGRAPH, 2003. 

 

[Land77] E. H. Land. The Retinex Theory of Color Vision. (The) Scientific American, 

12:108-128, December 1977. 

[London98] D. London and J. Upton. Photography. Sixth ed. Longman, 1998. 

[Mark03] W.R. Mark, R.S. Glanville, K. Akeley, M.J. Kilgard. Cg: A System for 

Programming Graphics Hardware in a C-like Language. The Proceedings of 

SIGGRAPH, 2003.  

[Marr82] D. Marr. Vision. Wiley, New York, NY, 1982. 

[McGwin99] G. McGwin, Jr., G.R. Jackson and C. Owsley. Using nonlinear 

regression to estimate parameters of dark adaptation. Behavior Research Methods, 

Instruments, & Computers, 31(4), pages 712-717, 1999. 

[Miller84] N.J. Miller, P.Y. Ngai, and D.D. Miller. The application of computer 

graphics in lighting design. Journal of the IES, 14:6–26, 1984. 

[Millerson91] Millerson. Lighting for Television and Films, 3rd ed. Focal Press, 1991. 

[Moon45] P. Moon and D. Spencer. The Visual Effect of Non-Uniform Surrounds. 

Journal of the Optical Society of America, vol. 35, No 3, pp. 233-248, 1945. 

  
 



 106

[Natural] http://www.ati.com/developer/demos/r9700.html, 2003. 

 

[Neumann98] L. Neumann, K. Matkovic and W. Purgathofer. Automatic exposure in 

computer graphics based on the minimum information loss principle. Proceedings of 

Computer Graphics International ’98, pages 1-19, 1998. 

[Nikon00] Nikon. http://www.nikon.ca, 2000. 

[NVidia] http://www.nvidia.com, 2003. 

 

[OpenGL] http://www.opengl.org, 2003. 

 

[OpenGLSpec] http://www.opengl.org/developers/documentation/specs.html, 2003. 

 

[Oppenheim68] A. Oppenheim, R. Schafer, and T. Stockham. Nonlinear filtering of 

multiplied and convolved signals. In Proceedings of the IEEE, volume 56, pages 

1264–1291, August 1968. 

 

[Pattanaik02] S.N. Pattanaik and H. Yee. Adaptive gain control for high dynamic 

range image display. Proceedings of the Spring Conference in Computer Graphics 

(SCCG2002). 

 

[Pattanaik00] S.N. Pattanaik, J.E. Tumblin, H. Yee, and D. P. Greenberg. Time-

dependent visual adaptation for realistic image display. In Proceedings of ACM 

SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, pages 

47–54. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, July 2000.  

 

  
 



 107

[Pattanaik98] S.N. Pattanaik, J.A. Ferwerda, M.D. Fairchild, and D.P. Greenberg. A 

multiscale model of adaptation and spatial vision for realistic image display. In 

Proceedings of SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference 

Series, pages 287–298, Orlando, Florida, July 1998. ACM SIGGRAPH / 

AddisonWesley.  

 

[Reinhard02] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photographic tone 

reproduction for digital images. In Proceedings of ACM SIGGRAPH 2002, Computer 

Graphics Proceedings, Annual Conference Series. ACM Press / ACM SIGGRAPH, 

July 2002. 

 

[RGBE] http://radsite.lbl.gov/radiance/refer/Notes/picture_format.html, 2003. 

 

[Scheel00] A. Scheel, M. Stamminger, and H-P. Seidel. Tone reproduction for 

interactive walkthroughs. Computer Graphics Forum, 19(3):301–312, August 2000.  

[Schlick94] C. Schlick. Quantization Technique for Visualization of High Dynamic 

Range Pictures. Proceedings 5th Eurographics Workshop on Rendering, pp.7-20., 

1994. 

[Shaler37] S. Shaler. The relation between visual acuity and illumination. Journal of 

General Physiology, 21, pages 165-188, 1937. 

[Spencer95] G. Spencer, P.S. Shirley, K. Zimmerman, and D.P. Greenberg. 

Physically-based glare effects for digital images. In Proceedings of SIGGRAPH 95, 

Computer Graphics Proceedings, Annual Conference Series, pages 325–334, Los 

Angeles, California, August 1995. ACM SIGGRAPH / AddisonWesley.  

  
 



 108

[Stevens60] S.S. Stevens and J.C. Stevens. Brightness Function: Parametric Effects of 

Adaptation and Contrast, Program of the 1960 Annual Meeting, Journal of the Optical 

Society of America, Volume 53, #ll, page 1139, November, 1960. 

[Stockam72] T.G. Stockham. Image processing in the context of a visual model. 

Proceedings of the IEEE, 60, pages 828-842, 1972. 

 

[Thompson02] W. Thompson, P. Shirley, and J.A. Ferwerda. A spatial post-

processing algorithm for images of night scenes. Journal of Graphics Tools 7(1), pages 

1-12, 2002. 

[Tumblin99] Tumblin, J., Hodgins, J. K., and Guenter, B. K. Two methods for display 

of high contrast images. ACM Transactions on Graphics 18, 1 (January 1999), 56--94. 

ISSN 0730-0301. 

[Tumblin99] J. Tumblin and G. Turk. Lcis: A boundary hierarchy for detail-preserving 

contrast reduction. In Proceedings of SIGGRAPH 99, Computer Graphics 

Proceedings, Annual Conference Series, pages 83–90, Los Angeles, California, 

August 1999. ACM SIGGRAPH / Addison Wesley Longman. 

 

[Tumblin93] J. Tumblin and H.E. Rushmeier. Tone reproduction for realistic images. 

IEEE Computer Graphics & Applications, 13(6):42–48, November 1993. 

 

[Upstill85] S.D. Upstill. The Realistic Presentation of Synthetic Images. PhD thesis, 

Computer Science Division, University of California, Berkeley, 1985. 

 

  
 



 

 

109

 
 

[Ward94] G. Ward. A contrast-based scale factor for luminance display. In Graphics 

Gems IV, pages 415–421. Academic Press, Boston, 1994. 

 

[Ward97] G.W. Larson, H.E. Rushmeier, and C. Piatko. A visibility matching tone 

reproduction operator for high dynamic range scenes. IEEE Transactions on 

Visualization and Computer Graphics, 3(4):291–306, October – December 1997.  

[Williams83] L. Williams, Pyramidal Parametrics. Computer Graphics, v.17,n.3, July 

1983. 

 

 

 

 

 

 

 

 


	1     Introduction     1
	2     Previous Work     6
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 5

	Chapter 6
	Chapter 7
	Chapter 4

	2.1 Current Operators
	2.1.1 Preference Based Global Operators
	2.1.2 Preference Based Local Operators
	2.1.4 Predictive Local Operators
	2.1.5 Real-Time Operators
	2.2 Related Work
	2.3 Summary
	Chapter 3
	Requirements and Basis for a New Operator
	4.1 Floating Point Textures
	4.2 P-Buffers
	4.3 Automatic Hardware Mipmapping
	4.4 Fragment Shaders
	5.1 Input Images
	5.2 Foveal Image
	5.3 Veiling Luminance
	5.4 Local Acuity Blurring
	5.5 Color Sensitivity
	5.6 Histogram Adjustment
	5.7 Fragment Shader
	Chapter 6
	Adaptation Time Course
	6.1 Dark Adaptation
	6.2 Light Adaptation
	7.1 Simulating Wide Absolute Changes in Illumination
	7.2 Comparison With Ward’s Histogram Adjustment O
	7.3 High Dynamic Range and Operator Performance
	7.4 Light and Dark Adaptation
	7.5 Normal Versus Aged Observers

